論文の概要: LLaMo: Large Language Model-based Molecular Graph Assistant
- arxiv url: http://arxiv.org/abs/2411.00871v1
- Date: Thu, 31 Oct 2024 03:56:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:22.956500
- Title: LLaMo: Large Language Model-based Molecular Graph Assistant
- Title(参考訳): LLaMo:大規模言語モデルに基づく分子グラフアシスタント
- Authors: Jinyoung Park, Minseong Bae, Dohwan Ko, Hyunwoo J. Kim,
- Abstract要約: 大規模言語モデルに基づく分子グラフアシスタントLLaMoを提案する。
本稿では,グラフ表現をグラフトークンに変換するマルチレベルグラフプロジェクタを提案する。
また,大規模分子グラフ言語モデルを用いて,機械が生成する分子グラフ命令データも導入する。
- 参考スコア(独自算出の注目度): 16.52956645156377
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable generalization and instruction-following capabilities with instruction tuning. The advancements in LLMs and instruction tuning have led to the development of Large Vision-Language Models (LVLMs). However, the competency of the LLMs and instruction tuning have been less explored in the molecular domain. Thus, we propose LLaMo: Large Language Model-based Molecular graph assistant, which is an end-to-end trained large molecular graph-language model. To bridge the discrepancy between the language and graph modalities, we present the multi-level graph projector that transforms graph representations into graph tokens by abstracting the output representations of each GNN layer and motif representations with the cross-attention mechanism. We also introduce machine-generated molecular graph instruction data to instruction-tune the large molecular graph-language model for general-purpose molecule and language understanding. Our extensive experiments demonstrate that LLaMo shows the best performance on diverse tasks, such as molecular description generation, property prediction, and IUPAC name prediction. The code of LLaMo is available at https://github.com/mlvlab/LLaMo.
- Abstract(参考訳): LLM(Large Language Models)は、命令チューニングによる顕著な一般化と命令追従機能を示す。
LLM(Large Vision-Language Models)は、LVLM(Large Vision-Language Models)の発展に繋がる。
しかし、LLMの能力や命令チューニングは分子領域では研究されていない。
そこで我々はLLaMo: Large Language Model-based Molecular graph assistantを提案する。
本稿では,グラフ表現をグラフトークンに変換する多層グラフプロジェクタを提案する。
また,汎用分子と言語理解のための大規模分子グラフ言語モデルを構築するために,機械生成分子グラフ命令データを導入している。
LLaMo は分子記述生成や特性予測,IUPAC の名前予測など,様々なタスクにおいて最高の性能を示す。
LLaMoのコードはhttps://github.com/mlvlab/LLaMoで公開されている。
関連論文リスト
- LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and
Uni-Modal Adapter [91.77292826067465]
言語モデル(LM)は、様々な1Dテキスト関連タスクにおいて、印象的な分子理解能力を示す。
しかし、それらは本質的に2次元グラフの認識を欠いている。
クロスモーダルプロジェクタとユニモーダルアダプタを用いた分子グラフ言語モデリング(MolCA: Molecular Graph-Language Modeling)を提案する。
論文 参考訳(メタデータ) (2023-10-19T14:52:58Z) - Language is All a Graph Needs [33.9836278881785]
InstructGLM (Instruction-finetuned Graph Language Model) を提案する。
我々の手法は、ogbn-arxiv, Cora, PubMedデータセット上のすべてのGNNベースラインを超える。
論文 参考訳(メタデータ) (2023-08-14T13:41:09Z) - GIT-Mol: A Multi-modal Large Language Model for Molecular Science with
Graph, Image, and Text [25.979382232281786]
グラフ,画像,テキスト情報を統合したマルチモーダルな大規模言語モデルであるGIT-Molを紹介する。
特性予測の精度は5%-10%向上し、分子生成の妥当性は20.2%向上した。
論文 参考訳(メタデータ) (2023-08-14T03:12:29Z) - GIMLET: A Unified Graph-Text Model for Instruction-Based Molecule
Zero-Shot Learning [71.89623260998934]
本研究は,ゼロショット環境下での分子関連タスクの実現に自然言語命令を用いることの実現可能性について検討する。
既存の分子テキストモデルは、命令の不十分な処理とグラフの限られた容量のために、この設定では性能が良くない。
グラフデータとテキストデータの両方の言語モデルを統合するGIMLETを提案する。
論文 参考訳(メタデータ) (2023-05-28T18:27:59Z) - MolGraph: a Python package for the implementation of molecular graphs
and graph neural networks with TensorFlow and Keras [51.92255321684027]
MolGraphは、分子機械学習(ML)のためのグラフニューラルネットワーク(GNN)パッケージである
MolGraphは、分子ML問題を解決するためにGNNアルゴリズムに渡すことができる小さな分子グラフを生成するための化学モジュールを実装している。
GNNは分子識別に有用であり,クロマトグラフィー保持時間データの解釈性が向上した。
論文 参考訳(メタデータ) (2022-08-21T18:37:41Z) - Keeping it Simple: Language Models can learn Complex Molecular
Distributions [0.0]
本稿では,分子の複雑な分布をコンパイルすることで,複雑な生成モデリングタスクを導入する。
その結果、言語モデルは強力な生成モデルであり、複雑な分子分布を十分に学習できることを示した。
論文 参考訳(メタデータ) (2021-12-06T13:40:58Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。