Resilience to the Flowing Unknown: an Open Set Recognition Framework for Data Streams
- URL: http://arxiv.org/abs/2411.00876v1
- Date: Thu, 31 Oct 2024 11:06:54 GMT
- Title: Resilience to the Flowing Unknown: an Open Set Recognition Framework for Data Streams
- Authors: Marcos Barcina-Blanco, Jesus L. Lobo, Pablo Garcia-Bringas, Javier Del Ser,
- Abstract summary: This work investigates the application of an Open Set Recognition framework that combines classification and clustering to address the textitover-occupied space problem in streaming scenarios.
- Score: 6.7236795813629
- License:
- Abstract: Modern digital applications extensively integrate Artificial Intelligence models into their core systems, offering significant advantages for automated decision-making. However, these AI-based systems encounter reliability and safety challenges when handling continuously generated data streams in complex and dynamic scenarios. This work explores the concept of resilient AI systems, which must operate in the face of unexpected events, including instances that belong to patterns that have not been seen during the training process. This is an issue that regular closed-set classifiers commonly encounter in streaming scenarios, as they are designed to compulsory classify any new observation into one of the training patterns (i.e., the so-called \textit{over-occupied space} problem). In batch learning, the Open Set Recognition research area has consistently confronted this issue by requiring models to robustly uphold their classification performance when processing query instances from unknown patterns. In this context, this work investigates the application of an Open Set Recognition framework that combines classification and clustering to address the \textit{over-occupied space} problem in streaming scenarios. Specifically, we systematically devise a benchmark comprising different classification datasets with varying ratios of known to unknown classes. Experiments are presented on this benchmark to compare the performance of the proposed hybrid framework with that of individual incremental classifiers. Discussions held over the obtained results highlight situations where the proposed framework performs best, and delineate the limitations and hurdles encountered by incremental classifiers in effectively resolving the challenges posed by open-world streaming environments.
Related papers
- Informed Decision-Making through Advancements in Open Set Recognition and Unknown Sample Detection [0.0]
Open set recognition (OSR) aims to bring classification tasks in a situation that is more like reality.
This study provides an algorithm exploring a new representation of feature space to improve classification in OSR tasks.
arXiv Detail & Related papers (2024-05-09T15:15:34Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Managing the unknown: a survey on Open Set Recognition and tangential
areas [7.345136916791223]
Open Set Recognition models are capable of detecting unknown classes from samples arriving during the testing phase, while maintaining a good level of performance in the classification of samples belonging to known classes.
This review comprehensively overviews the recent literature related to Open Set Recognition, identifying common practices, limitations, and connections of this field with other machine learning research areas.
Our work also uncovers open problems and suggests several research directions that may motivate and articulate future efforts towards more safe Artificial Intelligence methods.
arXiv Detail & Related papers (2023-12-14T10:08:12Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - An Empirical Evaluation of Federated Contextual Bandit Algorithms [27.275089644378376]
Federated learning can be done using implicit signals generated as users interact with applications of interest.
We develop variants of prominent contextual bandit algorithms from the centralized seting for the federated setting.
Our experiments reveal the surprising effectiveness of the simple and commonly used softmax in balancing the well-know exploration-exploitation tradeoff.
arXiv Detail & Related papers (2023-03-17T19:22:30Z) - Open World Classification with Adaptive Negative Samples [89.2422451410507]
Open world classification is a task in natural language processing with key practical relevance and impact.
We propose an approach based on underlineadaptive underlinesamples (ANS) designed to generate effective synthetic open category samples in the training stage.
ANS achieves significant improvements over state-of-the-art methods.
arXiv Detail & Related papers (2023-03-09T21:12:46Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - KnAC: an approach for enhancing cluster analysis with background
knowledge and explanations [0.20999222360659603]
We present Knowledge Augmented Clustering (KnAC), which main goal is to confront expert-based labelling with automated clustering.
KnAC can serve as an augmentation of an arbitrary clustering algorithm, making the approach robust and model-agnostic.
arXiv Detail & Related papers (2021-12-16T10:13:47Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
Person re-identification (re-ID) is an important topic in computer vision.
This paper studies the unsupervised setting of re-ID, which does not require any labeled information.
Experiments on two image-based and video-based datasets demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2020-04-07T17:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.