Managing the unknown: a survey on Open Set Recognition and tangential
areas
- URL: http://arxiv.org/abs/2312.08785v2
- Date: Fri, 5 Jan 2024 11:42:22 GMT
- Title: Managing the unknown: a survey on Open Set Recognition and tangential
areas
- Authors: Marcos Barcina-Blanco, Jesus L. Lobo, Pablo Garcia-Bringas, Javier Del
Ser
- Abstract summary: Open Set Recognition models are capable of detecting unknown classes from samples arriving during the testing phase, while maintaining a good level of performance in the classification of samples belonging to known classes.
This review comprehensively overviews the recent literature related to Open Set Recognition, identifying common practices, limitations, and connections of this field with other machine learning research areas.
Our work also uncovers open problems and suggests several research directions that may motivate and articulate future efforts towards more safe Artificial Intelligence methods.
- Score: 7.345136916791223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world scenarios classification models are often required to perform
robustly when predicting samples belonging to classes that have not appeared
during its training stage. Open Set Recognition addresses this issue by
devising models capable of detecting unknown classes from samples arriving
during the testing phase, while maintaining a good level of performance in the
classification of samples belonging to known classes. This review
comprehensively overviews the recent literature related to Open Set
Recognition, identifying common practices, limitations, and connections of this
field with other machine learning research areas, such as continual learning,
out-of-distribution detection, novelty detection, and uncertainty estimation.
Our work also uncovers open problems and suggests several research directions
that may motivate and articulate future efforts towards more safe Artificial
Intelligence methods.
Related papers
- Open Set Recognition for Random Forest [4.266270583680947]
In real-world classification tasks, it is difficult to collect training examples that exhaust all possible classes.
We propose a novel approach to enabling open-set recognition capability for random forest.
The proposed method is validated on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-08-01T04:21:14Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
Forgetting refers to the loss or deterioration of previously acquired knowledge.
Forgetting is a prevalent phenomenon observed in various other research domains within deep learning.
arXiv Detail & Related papers (2023-07-16T16:27:58Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - Semantic Novelty Detection via Relational Reasoning [17.660958043781154]
We propose a novel representation learning paradigm based on relational reasoning.
Our experiments show that this knowledge is directly transferable to a wide range of scenarios.
It can be exploited as a plug-and-play module to convert closed-set recognition models into reliable open-set ones.
arXiv Detail & Related papers (2022-07-18T15:49:27Z) - The Familiarity Hypothesis: Explaining the Behavior of Deep Open Set
Methods [86.39044549664189]
Anomaly detection algorithms for feature-vector data identify anomalies as outliers, but outlier detection has not worked well in deep learning.
This paper proposes the Familiarity Hypothesis that these methods succeed because they are detecting the absence of familiar learned features rather than the presence of novelty.
The paper concludes with a discussion of whether familiarity detection is an inevitable consequence of representation learning.
arXiv Detail & Related papers (2022-03-04T18:32:58Z) - A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution
Detection: Solutions and Future Challenges [28.104112546546936]
Machine learning models often encounter samples that are diverged from the training distribution.
Despite having similar and shared concepts, out-of-distribution, open-set, and anomaly detection have been investigated independently.
This survey aims to provide a cross-domain and comprehensive review of numerous eminent works in respective areas.
arXiv Detail & Related papers (2021-10-26T22:05:31Z) - Conditional Variational Capsule Network for Open Set Recognition [64.18600886936557]
In open set recognition, a classifier has to detect unknown classes that are not known at training time.
Recently proposed Capsule Networks have shown to outperform alternatives in many fields, particularly in image recognition.
In our proposal, during training, capsules features of the same known class are encouraged to match a pre-defined gaussian, one for each class.
arXiv Detail & Related papers (2021-04-19T09:39:30Z) - Learning Open Set Network with Discriminative Reciprocal Points [70.28322390023546]
Open set recognition aims to simultaneously classify samples from predefined classes and identify the rest as 'unknown'
In this paper, we propose a new concept, Reciprocal Point, which is the potential representation of the extra-class space corresponding to each known category.
Based on the bounded space constructed by reciprocal points, the risk of unknown is reduced through multi-category interaction.
arXiv Detail & Related papers (2020-10-31T03:20:31Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Conditional Gaussian Distribution Learning for Open Set Recognition [10.90687687505665]
We propose Conditional Gaussian Distribution Learning (CGDL) for open set recognition.
In addition to detecting unknown samples, this method can also classify known samples by forcing different latent features to approximate different Gaussian models.
Experiments on several standard image reveal that the proposed method significantly outperforms the baseline method and achieves new state-of-the-art results.
arXiv Detail & Related papers (2020-03-19T14:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.