論文の概要: Technical Report for ActivityNet Challenge 2022 -- Temporal Action Localization
- arxiv url: http://arxiv.org/abs/2411.00883v1
- Date: Thu, 31 Oct 2024 14:16:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:40:10.293990
- Title: Technical Report for ActivityNet Challenge 2022 -- Temporal Action Localization
- Title(参考訳): 活動ネットチャレンジ2022技術報告-時間的行動ローカライゼーション
- Authors: Shimin Chen, Wei Li, Jianyang Gu, Chen Chen, Yandong Guo,
- Abstract要約: 本稿では,各アクションの時間的境界を特定し,未トリミングビデオにおけるアクションクラスを予測することを提案する。
Faster-TADは、TADのパイプラインを単純化し、素晴らしいパフォーマンスを得る。
- 参考スコア(独自算出の注目度): 20.268572246761895
- License:
- Abstract: In the task of temporal action localization of ActivityNet-1.3 datasets, we propose to locate the temporal boundaries of each action and predict action class in untrimmed videos. We first apply VideoSwinTransformer as feature extractor to extract different features. Then we apply a unified network following Faster-TAD to simultaneously obtain proposals and semantic labels. Last, we ensemble the results of different temporal action detection models which complement each other. Faster-TAD simplifies the pipeline of TAD and gets remarkable performance, obtaining comparable results as those of multi-step approaches.
- Abstract(参考訳): アクティビティNet-1.3データセットの時間的行動ローカライズ作業において、各アクションの時間的境界を特定し、未トリミングビデオにおけるアクションクラスを予測することを提案する。
まず、特徴抽出器としてVideoSwinTransformerを適用し、異なる特徴を抽出する。
次に、Faster-TADに従って統一ネットワークを適用し、提案とセマンティックラベルを同時に取得する。
最後に、互いに補完する異なる時間的行動検出モデルの結果をまとめる。
Faster-TADはTADのパイプラインを単純化し、優れたパフォーマンスを得る。
関連論文リスト
- Harnessing Temporal Causality for Advanced Temporal Action Detection [53.654457142657236]
本稿では,因果的注意と因果的マンバを組み合わせたCausalTADを提案する。
Ego4D Challenge 2024では,EPIC-Kitchens Challenge 2024では行動認識,行動検出,音声によるインタラクション検出トラックで1位,Ego4D Challenge 2024ではMoment Queriesトラックで1位にランクインした。
論文 参考訳(メタデータ) (2024-07-25T06:03:02Z) - HTNet: Anchor-free Temporal Action Localization with Hierarchical
Transformers [19.48000379201692]
時間的アクションローカライゼーション(TAL: Temporal Action Localization)は、ビデオ内のアクションの集合を識別するタスクである。
我々は,ビデオから開始時間,終了時間,クラス>三つ組のセットを予測する,HTNetと呼ばれる新しいアンカーフリーフレームワークを提案する。
本手法は,2つのTALベンチマークデータセット上で,正確なアクションインスタンスと最先端性能をローカライズする方法を実証する。
論文 参考訳(メタデータ) (2022-07-20T05:40:03Z) - Context-aware Proposal Network for Temporal Action Detection [47.72048484299649]
本報告では,CVPR-2022 AcitivityNet Challengeにおける時間的行動検出タスクの初当選ソリューションについて述べる。
このタスクは、アクションインスタンスの時間的境界を、長い未トリミングビデオの特定のクラスにローカライズすることを目的としている。
生成した提案にはリッチな文脈情報が含まれており、検出信頼度予測の恩恵を受ける可能性があると論じる。
論文 参考訳(メタデータ) (2022-06-18T01:43:43Z) - Towards High-Quality Temporal Action Detection with Sparse Proposals [14.923321325749196]
時間的アクション検出は、人間のアクションインスタンスを含む時間的セグメントをローカライズし、アクションカテゴリを予測することを目的としている。
階層的特徴と相互作用するためにスパース提案を導入する。
実験により,高いtIoU閾値下での本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-09-18T06:15:19Z) - End-to-end Temporal Action Detection with Transformer [86.80289146697788]
時間的アクション検出(TAD)は、トリミングされていないビデオにおいて、すべてのアクションインスタンスのセマンティックラベルとバウンダリを決定することを目的としている。
そこで我々は,textitTadTR と呼ばれる Transformer によるTAD のエンドツーエンドフレームワークを構築した。
本手法は,HACSセグメンツとTHUMOS14の最先端性能とActivityNet-1.3の競合性能を実現する。
論文 参考訳(メタデータ) (2021-06-18T17:58:34Z) - Augmented Transformer with Adaptive Graph for Temporal Action Proposal
Generation [79.98992138865042]
TAPGの長期的および局所的時間的コンテキストを利用するための適応グラフネットワーク(ATAG)を備えた拡張トランスを提案する。
具体的には、スニペット動作損失と前部ブロックを装着し、拡張トランスと呼ばれるバニラトランスを強化する。
位置情報と隣接特徴の差異をマイニングすることで局所時間文脈を構築するための適応型グラフ畳み込みネットワーク(gcn)を提案する。
論文 参考訳(メタデータ) (2021-03-30T02:01:03Z) - Complementary Boundary Generator with Scale-Invariant Relation Modeling
for Temporal Action Localization: Submission to ActivityNet Challenge 2020 [66.4527310659592]
本報告では,ActivityNet Challenge 2020 Task 1への提出時に使用したソリューションの概要を紹介する。
時間的行動ローカライゼーションタスクを2段階(すなわち提案生成と分類)に分離し,提案の多様性を高める。
提案手法は,課題テストセット上での平均mAPを用いて,時間的動作の局所化タスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-20T04:35:40Z) - Team RUC_AIM3 Technical Report at Activitynet 2020 Task 2: Exploring
Sequential Events Detection for Dense Video Captioning [63.91369308085091]
本稿では、イベントシーケンス生成のための新規でシンプルなモデルを提案し、ビデオ中のイベントシーケンスの時間的関係を探索する。
提案モデルでは,非効率な2段階提案生成を省略し,双方向時間依存性を条件としたイベント境界を直接生成する。
総合システムは、チャレンジテストセットの9.894 METEORスコアで、ビデオタスクにおける密封イベントの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-14T13:21:37Z) - Temporal Fusion Network for Temporal Action Localization:Submission to
ActivityNet Challenge 2020 (Task E) [45.3218136336925]
本稿では,Activitynet Challenge 2020で開催されているHACSコンペティションで使用した時間的行動ローカライズ手法について分析する。
課題は、未トリミングビデオ中のアクションの開始時刻と終了時刻を特定し、アクションカテゴリを予測することである。
提案手法は,複数のモデルの結果を融合することにより,検証セットで40.55%,mAPで40.53%を獲得し,この課題においてランク1を達成する。
論文 参考訳(メタデータ) (2020-06-13T00:33:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。