Intensity Field Decomposition for Tissue-Guided Neural Tomography
- URL: http://arxiv.org/abs/2411.00900v1
- Date: Fri, 01 Nov 2024 06:31:53 GMT
- Title: Intensity Field Decomposition for Tissue-Guided Neural Tomography
- Authors: Meng-Xun Li, Jin-Gang Yu, Yuan Gao, Cui Huang, Gui-Song Xia,
- Abstract summary: This article introduces a novel sparse-view CBCT reconstruction method, which empowers the neural field with human tissue regularization.
Our approach, termed tissue-guided neural tomography (TNT), is motivated by the distinct intensity differences between bone and soft tissue in CBCT.
Our method achieves comparable reconstruction quality with fewer projections and faster convergence compared to state-of-the-art neural rendering based methods.
- Score: 30.81166574148901
- License:
- Abstract: Cone-beam computed tomography (CBCT) typically requires hundreds of X-ray projections, which raises concerns about radiation exposure. While sparse-view reconstruction reduces the exposure by using fewer projections, it struggles to achieve satisfactory image quality. To address this challenge, this article introduces a novel sparse-view CBCT reconstruction method, which empowers the neural field with human tissue regularization. Our approach, termed tissue-guided neural tomography (TNT), is motivated by the distinct intensity differences between bone and soft tissue in CBCT. Intuitively, separating these components may aid the learning process of the neural field. More precisely, TNT comprises a heterogeneous quadruple network and the corresponding training strategy. The network represents the intensity field as a combination of soft and hard tissue components, along with their respective textures. We train the network with guidance from estimated tissue projections, enabling efficient learning of the desired patterns for the network heads. Extensive experiments demonstrate that the proposed method significantly improves the sparse-view CBCT reconstruction with a limited number of projections ranging from 10 to 60. Our method achieves comparable reconstruction quality with fewer projections and faster convergence compared to state-of-the-art neural rendering based methods.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
This study demonstrates a synthesis engine for neurovascular segmentation in serial-section optical coherence tomography images.
Our approach comprises two phases: label synthesis and label-to-image transformation.
We demonstrate the efficacy of the former by comparing it to several more realistic sets of training labels, and the latter by an ablation study of synthetic noise and artifact models.
arXiv Detail & Related papers (2024-07-01T16:09:07Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Fast and accurate sparse-view CBCT reconstruction using meta-learned
neural attenuation field and hash-encoding regularization [13.01191568245715]
Cone beam computed tomography (CBCT) is an emerging medical imaging technique to visualize the internal anatomical structures of patients.
reducing the number of projections in a CBCT scan while preserving the quality of a reconstructed image is challenging.
We propose a fast and accurate sparse-view CBCT reconstruction (FACT) method to provide better reconstruction quality and faster optimization speed.
arXiv Detail & Related papers (2023-12-04T07:23:44Z) - Neural Modulation Fields for Conditional Cone Beam Neural Tomography [18.721488634071193]
Cone Beam Neural Tomography (CondCBNT) shows improved performance for both high and low numbers of available projections on noise-free and noisy data.
We propose a novel conditioning method where local modulations are modeled per patient as a field over the input domain through a Neural Modulation Field (NMF)
arXiv Detail & Related papers (2023-07-17T09:41:01Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
We propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields.
Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views.
arXiv Detail & Related papers (2022-11-30T14:51:14Z) - TT-NF: Tensor Train Neural Fields [88.49847274083365]
We introduce a novel low-rank representation termed Train Neural Fields (TT-NF) for learning fields on regular grids.
We analyze the effect of low-rank compression on the downstream task quality metrics.
arXiv Detail & Related papers (2022-09-30T15:17:39Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
Low radiation dose may result in increased noise and artifacts, which greatly affected the clinical diagnosis.
To obtain high-quality Total-body Low-dose CT (LDCT) images, previous deep-learning-based research work has introduced various network architectures.
In this paper, we propose a novel intra-task knowledge transfer method that leverages the distilled knowledge from NDCT images.
arXiv Detail & Related papers (2021-12-01T06:46:38Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.