SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields
- URL: http://arxiv.org/abs/2211.17048v1
- Date: Wed, 30 Nov 2022 14:51:14 GMT
- Title: SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields
- Authors: Yu Fang, Lanzhuju Mei, Changjian Li, Yuan Liu, Wenping Wang, Zhiming
Cui, Dinggang Shen
- Abstract summary: We propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields.
Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views.
- Score: 71.84366290195487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cone beam computed tomography (CBCT) has been widely used in clinical
practice, especially in dental clinics, while the radiation dose of X-rays when
capturing has been a long concern in CBCT imaging. Several research works have
been proposed to reconstruct high-quality CBCT images from sparse-view 2D
projections, but the current state-of-the-arts suffer from artifacts and the
lack of fine details. In this paper, we propose SNAF for sparse-view CBCT
reconstruction by learning the neural attenuation fields, where we have
invented a novel view augmentation strategy to overcome the challenges
introduced by insufficient data from sparse input views. Our approach achieves
superior performance in terms of high reconstruction quality (30+ PSNR) with
only 20 input views (25 times fewer than clinical collections), which
outperforms the state-of-the-arts. We have further conducted comprehensive
experiments and ablation analysis to validate the effectiveness of our
approach.
Related papers
- Frequency-regularized Neural Representation Method for Sparse-view Tomographic Reconstruction [8.45338755060592]
We introduce the Regularized Neural Attenuation/Activity Field (Freq-NAF) for self-supervised sparse-view tomographic reconstruction.
Freq-NAF mitigates overfitting by frequency regularization, directly controlling the visible frequency bands in the neural network input.
arXiv Detail & Related papers (2024-09-22T11:19:38Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - C^2RV: Cross-Regional and Cross-View Learning for Sparse-View CBCT Reconstruction [17.54830070112685]
Cone beam computed tomography (CBCT) is an important imaging technology widely used in medical scenarios.
CBCT reconstruction is more challenging due to the increased dimensionality caused by the measurement process based on cone-shaped X-ray beams.
We propose C2RV by leveraging explicit multi-scale volumetric representations to enable cross-regional learning in the 3D space.
arXiv Detail & Related papers (2024-06-06T09:37:56Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Fast and accurate sparse-view CBCT reconstruction using meta-learned
neural attenuation field and hash-encoding regularization [13.01191568245715]
Cone beam computed tomography (CBCT) is an emerging medical imaging technique to visualize the internal anatomical structures of patients.
reducing the number of projections in a CBCT scan while preserving the quality of a reconstructed image is challenging.
We propose a fast and accurate sparse-view CBCT reconstruction (FACT) method to provide better reconstruction quality and faster optimization speed.
arXiv Detail & Related papers (2023-12-04T07:23:44Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Cross-domain Denoising for Low-dose Multi-frame Spiral Computed Tomography [20.463308418655526]
X-ray exposure raises concerns about potential health risks such as cancer.
The desire for lower radiation doses has driven researchers to improve reconstruction quality.
This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners.
arXiv Detail & Related papers (2023-04-21T09:30:22Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.