Ratio law: mathematical descriptions for a universal relationship between AI performance and input samples
- URL: http://arxiv.org/abs/2411.00913v1
- Date: Fri, 01 Nov 2024 13:43:19 GMT
- Title: Ratio law: mathematical descriptions for a universal relationship between AI performance and input samples
- Authors: Boming Kang, Qinghua Cui,
- Abstract summary: We show a ratio law showing that model performance and the ratio of minority to majority samples can be closely linked by two concise equations.
We mathematically proved that an AI model achieves its optimal performance on a balanced dataset.
- Score: 0.0
- License:
- Abstract: Artificial intelligence based on machine learning and deep learning has made significant advances in various fields such as protein structure prediction and climate modeling. However, a central challenge remains: the "black box" nature of AI, where precise quantitative relationships between inputs and outputs are often lacking. Here, by analyzing 323 AI models trained to predict human essential proteins, we uncovered a ratio law showing that model performance and the ratio of minority to majority samples can be closely linked by two concise equations. Moreover, we mathematically proved that an AI model achieves its optimal performance on a balanced dataset. More importantly, we next explore whether this finding can further guide us to enhance AI models' performance. Therefore, we divided the imbalanced dataset into several balanced subsets to train base classifiers, and then applied a bagging-based ensemble learning strategy to combine these base models. As a result, the equation-guided strategy substantially improved model performance, with increases of 4.06% and 5.28%, respectively, outperforming traditional dataset balancing techniques. Finally, we confirmed the broad applicability and generalization of these equations using different types of classifiers and 10 additional, diverse binary classification tasks. In summary, this study reveals two equations precisely linking AI's input and output, which could be helpful for unboxing the mysterious "black box" of AI.
Related papers
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - A comprehensible analysis of the efficacy of Ensemble Models for Bug
Prediction [0.0]
We present a comparison and analysis of the efficacy of two AI-based approaches, namely single AI models and ensemble AI models, for predicting the probability of a Java class being buggy.
Our experimental findings indicate that the ensemble of AI models can outperform the results of applying individual AI models.
arXiv Detail & Related papers (2023-10-18T17:43:54Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Generalized Oversampling for Learning from Imbalanced datasets and
Associated Theory [0.0]
In supervised learning, it is quite frequent to be confronted with real imbalanced datasets.
We propose a data augmentation procedure, the GOLIATH algorithm, based on kernel density estimates.
We evaluate the performance of the GOLIATH algorithm in imbalanced regression situations.
arXiv Detail & Related papers (2023-08-05T23:08:08Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
This paper explores the use of non-linear interpretable machine learning (ML) models in classification problems.
Various ensembles of trees are compared to linear models using imbalanced synthetic and real-world datasets.
In one of the two real-world datasets, knowledge distillation method achieves improved AUC scores.
arXiv Detail & Related papers (2022-04-04T17:56:37Z) - Interpretable pipelines with evolutionarily optimized modules for RL
tasks with visual inputs [5.254093731341154]
We propose end-to-end pipelines composed of multiple interpretable models co-optimized by means of evolutionary algorithms.
We test our approach in reinforcement learning environments from the Atari benchmark.
arXiv Detail & Related papers (2022-02-10T10:33:44Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.