From Fake Perfects to Conversational Imperfects: Exploring Image-Generative AI as a Boundary Object for Participatory Design of Public Spaces
- URL: http://arxiv.org/abs/2411.00949v1
- Date: Fri, 01 Nov 2024 18:02:46 GMT
- Title: From Fake Perfects to Conversational Imperfects: Exploring Image-Generative AI as a Boundary Object for Participatory Design of Public Spaces
- Authors: Jose A. Guridi, Angel Hsing-Chi Hwang, Duarte Santo, Maria Goula, Cristobal Cheyre, Lee Humphreys, Marco Rangel,
- Abstract summary: Image-generative artificial intelligence (IGAI) could support participatory design.
We study how IGAI could facilitate participatory processes when designing public spaces.
We conducted workshops and IGAI-mediated interviews in a real-world participatory process to upgrade a park in Los Angeles.
- Score: 5.968063252533802
- License:
- Abstract: Designing public spaces requires balancing the interests of diverse stakeholders within a constrained physical and institutional space. Designers usually approach these problems through participatory methods but struggle to incorporate diverse perspectives into design outputs. The growing capabilities of image-generative artificial intelligence (IGAI) could support participatory design. Prior work in leveraging IGAI's capabilities in design has focused on augmenting the experience and performance of individual creators. We study how IGAI could facilitate participatory processes when designing public spaces, a complex collaborative task. We conducted workshops and IGAI-mediated interviews in a real-world participatory process to upgrade a park in Los Angeles. We found (1) a shift from focusing on accuracy to fostering richer conversations as the desirable outcome of adopting IGAI in participatory design, (2) that IGAI promoted more space-aware conversations, and (3) that IGAI-mediated conversations are subject to the abilities of the facilitators in managing the interaction between themselves, the AI, and stakeholders. We contribute by discussing practical implications for using IGAI in participatory design, including success metrics, relevant skills, and asymmetries between designers and stakeholders. We finish by proposing a series of open research questions.
Related papers
- Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
We aim to create a compendium of different user-interaction patterns that can be used as a reference for designers and developers alike.
We also strive to lower the entry barrier for those attempting to learn more about the design of generative AI applications.
arXiv Detail & Related papers (2024-10-28T23:10:06Z) - Confronting Project Conflicts into Success: a Complex Systems Design Approach to Resolving Stalemates [0.0]
In today's complex projects development, stakeholders are often involved too late.
A purely associative and a-priori design-supported approach integrates both system's reality and stakeholder's interests.
The state-of-the-art Preferendus is deployed to co-creatively generate a best-fit-for-common-purpose solution.
arXiv Detail & Related papers (2024-09-02T07:44:43Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
Large language models (LLMs) are now accessible to anyone with a computer, a web browser, and an internet connection via browser-based interfaces.
This paper examines the affordances of interactive feedback features in ChatGPT's interface, analysing how they shape user input and participation in iteration.
arXiv Detail & Related papers (2024-08-27T13:50:37Z) - From Stem to Stern: Contestability Along AI Value Chains [21.781422547251676]
This workshop will grow and consolidate a community of interdisciplinary CSCW researchers focusing on the topic of contestable AI.
As an outcome of the workshop, we will synthesize the most pressing opportunities and challenges for contestability along AI value chains in the form of a research roadmap.
Considering the length and depth of AI value chains, it will especially spur discussions around the contestability of AI systems along various sites of such chains.
arXiv Detail & Related papers (2024-08-02T06:57:52Z) - Designing and Evaluating Dialogue LLMs for Co-Creative Improvised Theatre [48.19823828240628]
This study presents Large Language Models (LLMs) deployed in a month-long live show at the Edinburgh Festival Fringe.
We explore the technical capabilities and constraints of on-the-spot multi-party dialogue.
Our human-in-the-loop methodology underlines the challenges of these LLMs in generating context-relevant responses.
arXiv Detail & Related papers (2024-05-11T23:19:42Z) - DesignGPT: Multi-Agent Collaboration in Design [4.6272626111555955]
DesignGPT uses artificial intelligence agents to simulate the roles of different positions in the design company and allows human designers to collaborate with them in natural language.
Experimental results show that compared with separate AI tools, DesignGPT improves the performance of designers.
arXiv Detail & Related papers (2023-11-20T08:05:52Z) - Grasping AI: experiential exercises for designers [8.95562850825636]
We investigate techniques for exploring and reflecting on the interactional affordances, the unique relational possibilities, and the wider social implications of AI systems.
We find that exercises around metaphors and enactments make questions of training and learning, privacy and consent, autonomy and agency more tangible.
arXiv Detail & Related papers (2023-10-02T15:34:08Z) - Participatory Design Landscape for the Human-Machine Collaboration,
Interaction and Automation at the Frontiers of HCI (PDL 2021) [7.305653067711372]
This workshop will become a venue to share experiences and novel ideas in this area.
We welcome a wide scope of contributions in HCI which explore sustainable opportunities for participatory design and development practices.
arXiv Detail & Related papers (2022-07-07T10:44:14Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
It has become an important topic to explore the impact of AI on society from a people-centered perspective.
Previous works in citizen science have identified methods of using AI to engage the public in research.
This article discusses the challenges of applying AI in Community Citizen Science.
arXiv Detail & Related papers (2021-10-05T12:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.