Raspberry PhenoSet: A Phenology-based Dataset for Automated Growth Detection and Yield Estimation
- URL: http://arxiv.org/abs/2411.00967v1
- Date: Fri, 01 Nov 2024 18:34:26 GMT
- Title: Raspberry PhenoSet: A Phenology-based Dataset for Automated Growth Detection and Yield Estimation
- Authors: Parham Jafary, Anna Bazangeya, Michelle Pham, Lesley G. Campbell, Sajad Saeedi, Kourosh Zareinia, Habiba Bougherara,
- Abstract summary: We introduce Raspberry PhenoSet, a phenology-based dataset for detecting and segmenting raspberry fruit across seven developmental stages.
This dataset contains 1,853 high-resolution images, the highest quality in the literature, captured under controlled artificial lighting in a vertical farm.
We benchmarked several state-of-the-art deep learning models, including YOLOv8, YOLOv10, RT-DETR, and Mask R-CNN, to provide a comprehensive evaluation of their performance on the dataset.
- Score: 1.2661567777618703
- License:
- Abstract: The future of the agriculture industry is intertwined with automation. Accurate fruit detection, yield estimation, and harvest time estimation are crucial for optimizing agricultural practices. These tasks can be carried out by robots to reduce labour costs and improve the efficiency of the process. To do so, deep learning models should be trained to perform knowledge-based tasks, which outlines the importance of contributing valuable data to the literature. In this paper, we introduce Raspberry PhenoSet, a phenology-based dataset designed for detecting and segmenting raspberry fruit across seven developmental stages. To the best of our knowledge, Raspberry PhenoSet is the first fruit dataset to integrate biology-based classification with fruit detection tasks, offering valuable insights for yield estimation and precise harvest timing. This dataset contains 1,853 high-resolution images, the highest quality in the literature, captured under controlled artificial lighting in a vertical farm. The dataset has a total of 6,907 instances of mask annotations, manually labelled to reflect the seven phenology stages. We have also benchmarked Raspberry PhenoSet using several state-of-the-art deep learning models, including YOLOv8, YOLOv10, RT-DETR, and Mask R-CNN, to provide a comprehensive evaluation of their performance on the dataset. Our results highlight the challenges of distinguishing subtle phenology stages and underscore the potential of Raspberry PhenoSet for both deep learning model development and practical robotic applications in agriculture, particularly in yield prediction and supply chain management. The dataset and the trained models are publicly available for future studies.
Related papers
- MetaFruit Meets Foundation Models: Leveraging a Comprehensive Multi-Fruit Dataset for Advancing Agricultural Foundation Models [10.11552909915055]
We introduce MetaFruit, the largest publicly available multi-class fruit dataset, comprising 4,248 images and 248,015 manually labeled instances.
This study proposes an innovative open-set fruit detection system leveraging advanced Vision Foundation Models (VFMs) for fruit detection.
arXiv Detail & Related papers (2024-05-14T00:13:47Z) - LAESI: Leaf Area Estimation with Synthetic Imagery [13.145253458335464]
We introduce LAESI, a Synthetic Leaf dataset of 100,000 synthetic leaf images on millimeter paper.
This dataset provides a resource for leaf morphology analysis aimed at beech and oak leaves.
We evaluate the applicability of the dataset by training machine learning models for leaf surface area prediction and semantic segmentation.
arXiv Detail & Related papers (2024-03-31T07:56:07Z) - Lincoln's Annotated Spatio-Temporal Strawberry Dataset (LAST-Straw) [7.13465721388535]
We present a dataset of 3D point clouds of strawberry plants for two varieties, totalling 84 individual point clouds.
We focus on the end use of such tools - the extraction of biologically relevant phenotypes - to demonstrate a phenotyping pipeline on the dataset.
This comprises of the steps, including; segmentation, skeletonisation and tracking, and we detail how each stage facilitates the extraction of different phenotypes or provision of data insights.
arXiv Detail & Related papers (2024-03-01T14:44:05Z) - Seed Kernel Counting using Domain Randomization and Object Tracking Neural Networks [0.0]
We propose a seed kernel counter that uses a low-cost mechanical hopper, trained YOLOv8 neural network model, and object tracking algorithms on StrongSORT and ByteTrack to estimate cereal yield from videos.
The experiment yields a seed kernel count with an accuracy of 95.2% and 93.2% for Soy and Wheat respectively using the StrongSORT algorithm, and an accuray of 96.8% and 92.4% for Soy and Wheat respectively using the ByteTrack algorithm.
arXiv Detail & Related papers (2023-08-10T19:56:15Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Productive Crop Field Detection: A New Dataset and Deep Learning
Benchmark Results [1.2233362977312945]
In precision agriculture, detecting productive crop fields is an essential practice that allows the farmer to evaluate operating performance.
Previous studies explore different methods to detect crop fields using advanced machine learning algorithms.
We propose a high-quality dataset generated by machine operation combined with Sentinel-2 images.
arXiv Detail & Related papers (2023-05-19T20:30:59Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.