LAESI: Leaf Area Estimation with Synthetic Imagery
- URL: http://arxiv.org/abs/2404.00593v1
- Date: Sun, 31 Mar 2024 07:56:07 GMT
- Title: LAESI: Leaf Area Estimation with Synthetic Imagery
- Authors: Jacek Kałużny, Yannik Schreckenberg, Karol Cyganik, Peter Annighöfer, Sören Pirk, Dominik L. Michels, Mikolaj Cieslak, Farhah Assaad-Gerbert, Bedrich Benes, Wojciech Pałubicki,
- Abstract summary: We introduce LAESI, a Synthetic Leaf dataset of 100,000 synthetic leaf images on millimeter paper.
This dataset provides a resource for leaf morphology analysis aimed at beech and oak leaves.
We evaluate the applicability of the dataset by training machine learning models for leaf surface area prediction and semantic segmentation.
- Score: 13.145253458335464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce LAESI, a Synthetic Leaf Dataset of 100,000 synthetic leaf images on millimeter paper, each with semantic masks and surface area labels. This dataset provides a resource for leaf morphology analysis primarily aimed at beech and oak leaves. We evaluate the applicability of the dataset by training machine learning models for leaf surface area prediction and semantic segmentation, using real images for validation. Our validation shows that these models can be trained to predict leaf surface area with a relative error not greater than an average human annotator. LAESI also provides an efficient framework based on 3D procedural models and generative AI for the large-scale, controllable generation of data with potential further applications in agriculture and biology. We evaluate the inclusion of generative AI in our procedural data generation pipeline and show how data filtering based on annotation consistency results in datasets which allow training the highest performing vision models.
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
We propose a framework for synthesizing classification datasets that more faithfully represents the real data distribution.
DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model.
We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets.
arXiv Detail & Related papers (2024-07-15T17:10:31Z) - Modified CycleGAN for the synthesization of samples for wheat head
segmentation [0.09999629695552192]
In the absence of an annotated dataset, synthetic data can be used for model development.
We develop a realistic annotated synthetic dataset for wheat head segmentation.
The resulting model achieved a Dice score of 83.4% on an internal dataset and 83.6% on two external Global Wheat Head Detection datasets.
arXiv Detail & Related papers (2024-02-23T06:42:58Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
This paper introduces a novel simulation-enhanced data augmentation method for machine learning pathloss prediction.
Our method integrates synthetic data generated from a cellular coverage simulator and independently collected real-world datasets.
The integration of synthetic data significantly improves the generalizability of the model in different environments.
arXiv Detail & Related papers (2024-02-03T00:38:08Z) - KAXAI: An Integrated Environment for Knowledge Analysis and Explainable
AI [0.0]
The paper describes the design of a system that integrates AutoML, XAI, and synthetic data generation.
The system allows users to navigate and harness the power of machine learning while abstracting its complexities and providing high usability.
arXiv Detail & Related papers (2023-12-30T10:20:47Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - A Deep Learning Generative Model Approach for Image Synthesis of Plant
Leaves [62.997667081978825]
We generate via advanced Deep Learning (DL) techniques artificial leaf images in an automatized way.
We aim to dispose of a source of training samples for AI applications for modern crop management.
arXiv Detail & Related papers (2021-11-05T10:53:35Z) - Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming [3.4788711710826083]
We propose an alternative solution with respect to the common data augmentation methods, applying it to the problem of crop/weed segmentation in precision farming.
We create semi-artificial samples by replacing the most relevant object classes (i.e., crop and weeds) with their synthesized counterparts.
In addition to RGB data, we take into account also near-infrared (NIR) information, generating four channel multi-spectral synthetic images.
arXiv Detail & Related papers (2020-09-12T08:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.