論文の概要: A lightweight Convolutional Neural Network based on U shape structure and Attention Mechanism for Anterior Mediastinum Segmentation
- arxiv url: http://arxiv.org/abs/2411.01019v1
- Date: Fri, 01 Nov 2024 20:41:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:21.400301
- Title: A lightweight Convolutional Neural Network based on U shape structure and Attention Mechanism for Anterior Mediastinum Segmentation
- Title(参考訳): U字形構造と前縦隔セグメンテーションの注意機構に基づく軽量畳み込みニューラルネットワーク
- Authors: Sina Soleimani-Fard, Won Gi Jeong, Francis Ferri Ripalda, Hasti Sasani, Younhee Choi, S Deiva, Gong Yong Jin, Seok-bum Ko,
- Abstract要約: 前縦隔病変(AML)を自動的に検出するには, 自動分節モデルが必要である。
本稿では,セグメントAMにU字型構造ネットワークを導入する。
長距離依存関係と局所性を維持するために2つの注意機構が用いられた。
- 参考スコア(独自算出の注目度): 3.724079390276705
- License:
- Abstract: To automatically detect Anterior Mediastinum Lesions (AMLs) in the Anterior Mediastinum (AM), the primary requirement will be an automatic segmentation model specifically designed for the AM. The prevalence of AML is extremely low, making it challenging to conduct screening research similar to lung cancer screening. Retrospectively reviewing chest CT scans over a specific period to investigate the prevalence of AML requires substantial time. Therefore, developing an Artificial Intelligence (AI) model to find location of AM helps radiologist to enhance their ability to manage workloads and improve diagnostic accuracy for AMLs. In this paper, we introduce a U-shaped structure network to segment AM. Two attention mechanisms were used for maintaining long-range dependencies and localization. In order to have the potential of Multi-Head Self-Attention (MHSA) and a lightweight network, we designed a parallel MHSA named Wide-MHSA (W-MHSA). Maintaining long-range dependencies is crucial for segmentation when we upsample feature maps. Therefore, we designed a Dilated Depth-Wise Parallel Path connection (DDWPP) for this purpose. In order to design a lightweight architecture, we introduced an expanding convolution block and combine it with the proposed W-MHSA for feature extraction in the encoder part of the proposed U-shaped network. The proposed network was trained on 2775 AM cases, which obtained an average Dice Similarity Coefficient (DSC) of 87.83%, mean Intersection over Union (IoU) of 79.16%, and Sensitivity of 89.60%. Our proposed architecture exhibited superior segmentation performance compared to the most advanced segmentation networks, such as Trans Unet, Attention Unet, Res Unet, and Res Unet++.
- Abstract(参考訳): 前縦隔病変(AML)を自動的に検出するためには、AM用に特別に設計された自動セグメンテーションモデルが要求される。
AMLの有病率は極めて低く、肺癌検診と同様のスクリーニング研究を行うことは困難である。
胸部CT検査を一定期間にわたって再検討し,AMLの有病率について検討した。
したがって、AMの位置を見つけるための人工知能(AI)モデルを開発することで、放射線学者はワークロードの管理能力を高め、AMLの診断精度を向上させることができる。
本稿では,セグメントAMにU字型構造ネットワークを導入する。
長距離依存と局所性を維持するために2つの注意機構が用いられた。
マルチヘッド自己注意(MHSA)と軽量ネットワークの可能性を秘め,Wide-MHSA(Wide-MHSA)という並列MHSAを設計した。
機能マップをアップサンプリングする場合、セグメンテーションには、長距離依存関係の維持が不可欠です。
そこで我々はDilated Depth-Wise Parallel Path Connect (DDWPP) を設計した。
軽量なアーキテクチャを設計するために,我々は拡張畳み込みブロックを導入し,提案したU字型ネットワークのエンコーダ部に特徴抽出を行うW-MHSAと組み合わせた。
提案したネットワークは、平均Dice similarity Coefficient(DSC)87.83%、Intersection over Union(IoU)79.16%、Sensitivity89.60%の2775 AMでトレーニングされた。
提案アーキテクチャは,Trans Unet, Attention Unet, Res Unet, Res Unet++など,最も先進的なセグメンテーションネットワークと比較して,優れたセグメンテーション性能を示した。
関連論文リスト
- Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network [6.166929138912052]
本稿では,HSI分類タスクのための漏洩統合火災ニューロンモデルに基づくスパイキングニューラルネットワーク(SNN)を構築する。
SNN-SWMRでは、タイムステップの約84%、トレーニング時間、テストタイムの約63%と70%を同じ精度で削減する必要がある。
論文 参考訳(メタデータ) (2024-09-18T00:51:01Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
現在の最先端の医用画像分割法は精度を優先するが、計算要求の増大とより大きなモデルサイズを犠牲にすることも多い。
計算冗長性を避けつつグローバルな局所特徴処理のバランスをとる新しい医用画像分割モデルPMFSNetを提案する。
長期依存関係をキャプチャするために,アテンション機構に基づいたマルチスケール機能拡張モジュールであるPMFSブロックをプラグインとして組み込んでいる。
論文 参考訳(メタデータ) (2024-01-15T10:26:47Z) - Two-stage MR Image Segmentation Method for Brain Tumors based on
Attention Mechanism [27.08977505280394]
CycleGAN(CycleGAN)に基づく協調・空間的注意生成対向ネットワーク(CASP-GAN)を提案する。
ジェネレータの性能は、コーディネート・アテンション(CA)モジュールと空間アテンション(SA)モジュールを導入することで最適化される。
元の医用画像の構造情報と詳細な情報を抽出する能力は、所望の画像をより高品質に生成するのに役立つ。
論文 参考訳(メタデータ) (2023-04-17T08:34:41Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
MRシークエンスにおける前立腺の位置に関する事前情報のための補助入力をニューラルネットワークに導入する。
MR-TRUS前立腺データのラベルが弱いことから,最先端のディープラーニング手法に匹敵する登録品質を示した。
論文 参考訳(メタデータ) (2021-02-09T16:48:59Z) - Adaptive Linear Span Network for Object Skeleton Detection [56.78705071830965]
本研究では,適応線形スパンネットワーク(AdaLSN)を提案する。
AdaLSNは、精度とレイテンシのトレードオフを著しく高めることで、その汎用性を裏付ける。
また、エッジ検出や道路抽出といったイメージ・ツー・マスクのタスクに適用可能であることも示している。
論文 参考訳(メタデータ) (2020-11-08T12:51:14Z) - ARPM-net: A novel CNN-based adversarial method with Markov Random Field
enhancement for prostate and organs at risk segmentation in pelvic CT images [10.011212599949541]
本研究は,CT画像の多臓器セマンティックセマンティックセグメンテーションを改善するために,新しいCNNに基づく対角深層学習法を開発することを目的とする。
MRF(Markov Random Field)拡張ネットワーク (ARPM-net) は, 対向学習方式を実装している。
モデル輪郭の精度はDice similarity coefficient (DSC), Average Hausdorff Distance (AHD), Average Surface Hausdorff Distance (ASHD), relative Volume difference (VD) を用いて測定した。
論文 参考訳(メタデータ) (2020-08-11T02:40:53Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。