論文の概要: Music Foundation Model as Generic Booster for Music Downstream Tasks
- arxiv url: http://arxiv.org/abs/2411.01135v2
- Date: Tue, 05 Nov 2024 08:51:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:58:12.467371
- Title: Music Foundation Model as Generic Booster for Music Downstream Tasks
- Title(参考訳): 音楽ダウンストリームタスクのためのジェネリックブースターとしての音楽ファンデーションモデル
- Authors: WeiHsiang Liao, Yuhta Takida, Yukara Ikemiya, Zhi Zhong, Chieh-Hsin Lai, Giorgio Fabbro, Kazuki Shimada, Keisuke Toyama, Kinwai Cheuk, Marco A. Martínez-Ramírez, Shusuke Takahashi, Stefan Uhlich, Taketo Akama, Woosung Choi, Yuichiro Koyama, Yuki Mitsufuji,
- Abstract要約: 対象の音楽サンプルから階層的特徴を抽出する音楽基礎モデル(MFM)であるSoniDoを紹介する。
階層的な中間機能を活用することで、SoniDoは情報の粒度を制限し、さまざまな下流タスクのパフォーマンスを改善する。
- 参考スコア(独自算出の注目度): 26.09067595520842
- License:
- Abstract: We demonstrate the efficacy of using intermediate representations from a single foundation model to enhance various music downstream tasks. We introduce SoniDo, a music foundation model (MFM) designed to extract hierarchical features from target music samples. By leveraging hierarchical intermediate features, SoniDo constrains the information granularity, leading to improved performance across various downstream tasks including both understanding and generative tasks. We specifically evaluated this approach on representative tasks such as music tagging, music transcription, music source separation, and music mixing. Our results reveal that the features extracted from foundation models provide valuable enhancements in training downstream task models. This highlights the capability of using features extracted from music foundation models as a booster for downstream tasks. Our approach not only benefits existing task-specific models but also supports music downstream tasks constrained by data scarcity. This paves the way for more effective and accessible music processing solutions.
- Abstract(参考訳): 本研究では,1つの基礎モデルから中間表現を用いることで,様々な音楽の下流タスクを強化する効果を実証する。
対象の音楽サンプルから階層的特徴を抽出する音楽基礎モデル(MFM)であるSoniDoを紹介する。
階層的な中間機能を活用することで、SoniDoは情報の粒度を制限し、理解タスクと生成タスクの両方を含むさまざまな下流タスクのパフォーマンスを改善します。
本研究では,音楽タグ付け,音楽の書き起こし,音源分離,音楽の混合といった代表的課題に対して,このアプローチを特に評価した。
その結果,基礎モデルから抽出した特徴が下流タスクモデルのトレーニングにおいて有意義な改善をもたらすことがわかった。
これは、音楽ファンデーションモデルから抽出した機能を下流タスクのブースターとして使う能力を強調している。
既存のタスク固有モデルだけでなく,データ不足に制約された下流タスクもサポートしています。
これにより、より効果的でアクセスしやすい音楽処理ソリューションの道が開ける。
関連論文リスト
- MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Music Auto-Tagging with Robust Music Representation Learned via Domain
Adversarial Training [18.71152526968065]
音楽情報検索(MIR)の既存のモデルは、マルチメディアコンテンツにおける環境や音声などの現実的なノイズに苦しむ。
本研究では,音声関連タスクにインスパイアされた,ノイズの多い環境下での音楽の自動タグ付け性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-01-27T06:56:51Z) - Perceptual Musical Features for Interpretable Audio Tagging [2.1730712607705485]
本研究では,音楽の自動タグ付けにおける解釈可能性の関連性について検討する。
3つの異なる情報抽出手法を組み込んだワークフローを構築した。
MTG-JamendoデータセットとGTZANデータセットの2つのデータセットについて実験を行った。
論文 参考訳(メタデータ) (2023-12-18T14:31:58Z) - MusicAgent: An AI Agent for Music Understanding and Generation with
Large Language Models [54.55063772090821]
MusicAgentは、多数の音楽関連ツールと、ユーザの要求に対処するための自律ワークフローを統合している。
このシステムの第一の目的は、AI音楽ツールの複雑さからユーザーを解放し、クリエイティブな側面に集中できるようにすることである。
論文 参考訳(メタデータ) (2023-10-18T13:31:10Z) - Performance Conditioning for Diffusion-Based Multi-Instrument Music
Synthesis [15.670399197114012]
本稿では,特定の性能と記録環境に生成モデルを条件付け,多施設合成の制御を強化することを提案する。
パフォーマンスコンディショニング(Performance Conditioning)とは、特定の演奏から採った特定の楽器のスタイルと音色で音楽を合成する生成モデルを示すツールである。
試作機は,多種多様な楽器と最先端のFADリアリズムスコアを用いた未計算性能を用いて評価した。
論文 参考訳(メタデータ) (2023-09-21T17:44:57Z) - Self-Supervised Contrastive Learning for Robust Audio-Sheet Music
Retrieval Systems [3.997809845676912]
自己指導型コントラスト学習は、実際の音楽コンテンツからの注釈付きデータの不足を軽減することができることを示す。
クロスモーダルなピース識別の高レベルなタスクにスニペットを埋め込む。
本研究では,実際の音楽データが存在する場合,検索品質が30%から100%に向上することが観察された。
論文 参考訳(メタデータ) (2023-09-21T14:54:48Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
我々は,UniversaL Evaluation(MARBLE)のための音楽音響表現ベンチマークを紹介する。
音響、パフォーマンス、スコア、ハイレベルな記述を含む4つの階層レベルを持つ包括的分類を定義することで、様々な音楽情報検索(MIR)タスクのベンチマークを提供することを目的としている。
次に、8つの公開データセット上の14のタスクに基づいて統一されたプロトコルを構築し、ベースラインとして音楽録音で開発されたすべてのオープンソース事前学習モデルの表現を公平かつ標準的に評価する。
論文 参考訳(メタデータ) (2023-06-18T12:56:46Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - Learning music audio representations via weak language supervision [14.335950077921435]
我々は,一連のプロキシタスクによって最適化された音楽と言語事前学習(MuLaP)のためのマルチモーダルアーキテクチャを設計する。
弱い監督は、トラックの全体的な音楽内容を伝える、騒々しい自然言語記述の形で提供される。
提案手法の有効性を,同一のオーディオバックボーンが生成する音声表現の性能と,異なる学習戦略とを比較して示す。
論文 参考訳(メタデータ) (2021-12-08T10:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。