論文の概要: HIP: Hierarchical Point Modeling and Pre-training for Visual Information Extraction
- arxiv url: http://arxiv.org/abs/2411.01139v1
- Date: Sat, 02 Nov 2024 05:00:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:40:05.135840
- Title: HIP: Hierarchical Point Modeling and Pre-training for Visual Information Extraction
- Title(参考訳): HIP:視覚情報抽出のための階層的ポイントモデリングと事前学習
- Authors: Rujiao Long, Pengfei Wang, Zhibo Yang, Cong Yao,
- Abstract要約: OCRに依存した手法はオフラインのOCRエンジンに依存し、OCRに依存しない手法は解釈性に欠ける出力や幻覚的内容を含む出力を生成する。
我々は, 階層的視点をモデルとしたHIPを提案し, エンドツーエンドのVIEタスクの階層的性質をよりよく適合させる。
具体的には、このような階層的な点は柔軟に符号化され、その後所望のテキスト書き起こし、地域の中心、エンティティのカテゴリにデコードされる。
- 参考スコア(独自算出の注目度): 24.46493675079128
- License:
- Abstract: End-to-end visual information extraction (VIE) aims at integrating the hierarchical subtasks of VIE, including text spotting, word grouping, and entity labeling, into a unified framework. Dealing with the gaps among the three subtasks plays a pivotal role in designing an effective VIE model. OCR-dependent methods heavily rely on offline OCR engines and inevitably suffer from OCR errors, while OCR-free methods, particularly those employing a black-box model, might produce outputs that lack interpretability or contain hallucinated content. Inspired by CenterNet, DeepSolo, and ESP, we propose HIP, which models entities as HIerarchical Points to better conform to the hierarchical nature of the end-to-end VIE task. Specifically, such hierarchical points can be flexibly encoded and subsequently decoded into desired text transcripts, centers of various regions, and categories of entities. Furthermore, we devise corresponding hierarchical pre-training strategies, categorized as image reconstruction, layout learning, and language enhancement, to reinforce the cross-modality representation of the hierarchical encoders. Quantitative experiments on public benchmarks demonstrate that HIP outperforms previous state-of-the-art methods, while qualitative results show its excellent interpretability.
- Abstract(参考訳): エンドツーエンドの視覚情報抽出(VIE)は、テキストスポッティング、ワードグルーピング、エンティティラベリングを含むVIEの階層的なサブタスクを統一されたフレームワークに統合することを目的としている。
3つのサブタスク間のギャップに対処することは、有効なVIEモデルの設計において重要な役割を果たす。
OCR依存の手法はオフラインのOCRエンジンに大きく依存し、OCRエラーに必然的に悩まされるが、OCR非依存の手法、特にブラックボックスモデルを使用するものは、解釈性に欠ける出力や幻覚コンテンツを含む出力を生成する。
CenterNet、DeepSolo、ESPにインスパイアされたHIPは、エンティティを階層的ポイントとしてモデル化し、エンドツーエンドのVIEタスクの階層的性質をよりよく適合させる。
具体的には、このような階層的な点は柔軟に符号化され、その後所望のテキスト書き起こし、地域の中心、エンティティのカテゴリにデコードされる。
さらに,階層型エンコーダのクロスモーダル表現を強化するために,画像再構成,レイアウト学習,言語拡張に分類した階層型事前学習戦略を考案した。
公開ベンチマークの定量的実験では、HIPは従来の最先端手法よりも優れており、定性的な結果は優れた解釈可能性を示している。
関連論文リスト
- Emergent Visual-Semantic Hierarchies in Image-Text Representations [13.300199242824934]
既存の基盤モデルの知識について検討し、視覚・意味的階層の創発的な理解を示すことを明らかにする。
本稿では,階層的理解の探索と最適化を目的としたRadial Embedding (RE)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-11T14:09:42Z) - Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
ポインター誘導セグメントオーダリング(SO)は,段落レベルのテキスト表現の文脈的理解を高めることを目的とした,新しい事前学習手法である。
実験の結果,ポインタ誘導型事前学習は複雑な文書構造を理解する能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-06T15:17:51Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - IDRNet: Intervention-Driven Relation Network for Semantic Segmentation [34.09179171102469]
同時進行の視覚パターンは、画素関係モデリングが密接な予測タスクを促進することを示唆している。
印象的な結果にもかかわらず、既存のパラダイムは、しばしば不適切または効果的な文脈情報集約に悩まされる。
我々は,textbfIntervention-textbfDriven textbfRelation textbfNetworkを提案する。
論文 参考訳(メタデータ) (2023-10-16T18:37:33Z) - CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model [55.321010757641524]
CLIP4STRは,CLIPのイメージエンコーダとテキストエンコーダ上に構築された,シンプルで効果的なSTRメソッドである。
モデルサイズ、事前トレーニングデータ、トレーニングデータの観点からCLIP4STRをスケールし、11のSTRベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-05-23T12:51:20Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
マルチモーダルな構造表現を強化するためのエンドツーエンドフレームワークであるStructure-CLIPを提案する。
シーングラフを用いてセマンティックなネガティブな例の構築をガイドし、その結果、構造化された表現の学習に重点を置いている。
知識エンハンス(KEE)は、SGKを入力として活用し、構造化表現をさらに強化するために提案される。
論文 参考訳(メタデータ) (2023-05-06T03:57:05Z) - OvarNet: Towards Open-vocabulary Object Attribute Recognition [42.90477523238336]
CLIP-Attrと呼ばれるオープンボキャブラリオブジェクトの検出と属性分類に有効な2段階のアプローチを提案する。
候補オブジェクトは最初、オフラインのRPNで提案され、後にセマンティックなカテゴリと属性に分類される。
視覚的シーン理解において,意味カテゴリーと属性の認識が相補的であることを示す。
論文 参考訳(メタデータ) (2023-01-23T15:59:29Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) は、非整合視覚言語サンプルペアから画像記述を学習するために開発された。
近年のVision-Language Pre-Trained Models (VL-PTMs) の成功は、プロンプトベース学習の発展を引き起こしている。
本稿では,UICモデルをトレーニングするためのプロンプトに基づく新しいスキームを提案し,その強力な一般化能力を最大限に活用する。
論文 参考訳(メタデータ) (2022-05-26T03:13:43Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
本稿では,データソースの非一様結合をトレーニングすることで,流動的な記述を生成するタスクに対処する。
ノイズの多い画像とテキストのペアを持つ大規模データセットは、サブ最適の監視源を提供する。
本稿では,検索コンポーネントから抽出したスタイルトークンとキーワードを組み込むことにより,セマンティクスと記述スタイルを活用・分離することを提案する。
論文 参考訳(メタデータ) (2021-11-24T19:00:05Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。