論文の概要: Designing a Robust Radiology Report Generation System
- arxiv url: http://arxiv.org/abs/2411.01153v1
- Date: Sat, 02 Nov 2024 06:38:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:43:21.191884
- Title: Designing a Robust Radiology Report Generation System
- Title(参考訳): ロバストラジオロジーレポート生成システムの設計
- Authors: Sonit Singh,
- Abstract要約: 本稿では,異なるモジュールを統合し,ベストプラクティスを強調することで,ロバストな放射線学レポート生成システムの設計について概説する。
これらのベストプラクティスは、自動放射線学レポート生成の改善、意思決定における放射線科医の増員、診断ワークフローの迅速化につながると信じている。
- 参考スコア(独自算出の注目度): 1.0878040851637998
- License:
- Abstract: Recent advances in deep learning have enabled researchers to explore tasks at the intersection of computer vision and natural language processing, such as image captioning, visual question answering, visual dialogue, and visual language navigation. Taking inspiration from image captioning, the task of radiology report generation aims at automatically generating radiology reports by having a comprehensive understanding of medical images. However, automatically generating radiology reports from medical images is a challenging task due to the complexity, diversity, and nature of medical images. In this paper, we outline the design of a robust radiology report generation system by integrating different modules and highlighting best practices drawing upon lessons from our past work and also from relevant studies in the literature. We also discuss the impact of integrating different components to form a single integrated system. We believe that these best practices, when implemented, could improve automatic radiology report generation, augment radiologists in decision making, and expedite diagnostic workflow, in turn improve healthcare and save human lives.
- Abstract(参考訳): 近年のディープラーニングの進歩により、研究者は画像キャプション、視覚的質問応答、視覚対話、視覚言語ナビゲーションといった、コンピュータビジョンと自然言語処理の交差点でのタスクを探索できるようになった。
画像キャプションからインスピレーションを得て, 医用画像の総合的な理解を得ることにより, 放射線診断レポートの自動生成を目指す。
しかし, 医用画像から放射線学レポートを自動生成することは, 医療用画像の複雑さ, 多様性, 性質から難しい課題である。
本稿では,異なるモジュールを統合し,過去の研究や文献研究から得た教訓に基づくベストプラクティスを強調することで,ロバストな放射線学レポート生成システムの設計について概説する。
また、異なるコンポーネントを統合して単一の統合システムを構築することの影響についても論じる。
これらのベストプラクティスは、実施すれば、自動放射線学レポート生成の改善、意思決定における放射線科医の増員、診断ワークフローの迅速化、医療の改善と人命の救いとなると信じている。
関連論文リスト
- ReXplain: Translating Radiology into Patient-Friendly Video Reports [5.787653511498558]
ReXplainは、患者フレンドリーな画像レポートを生成するAI駆動のシステムである。
5人の放射線学者による概念実証研究は、ReXplainが正確な放射線情報を提供できることを示唆している。
論文 参考訳(メタデータ) (2024-10-01T06:41:18Z) - AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
放射線学者は、大量の画像を日々のベースで解釈し、対応するレポートを生成する責任を負う。
この要求される作業負荷は、人間のエラーのリスクを高め、治療の遅れ、医療費の増加、収益損失、運用上の不効率につながる可能性がある。
地盤自動報告生成(AutoRG)に関する一連の研究を開始した。
このシステムは、脳の構造の明細化、異常の局所化、そしてよく組織化された発見の生成をサポートする。
論文 参考訳(メタデータ) (2024-07-23T17:50:00Z) - Are Generative AI systems Capable of Supporting Information Needs of
Patients? [4.485098382568721]
本研究は, 画像診断における患者情報への責任を負うことなく, 生成的視覚質問応答システムの有効性について検討する。
胸部CT検査を施行し, 胸部CT検査を施行し, 胸部CT検査を施行し, 胸部CT検査を施行した。
参加者と医療専門家の会話のテーマ分析を用いて,対話を通して一般的に発生するテーマを特定した。
我々は,放射線技師の反応に対して,最先端の2つの生成的視覚言語モデルを評価する。
論文 参考訳(メタデータ) (2024-01-31T23:24:37Z) - RaDialog: A Large Vision-Language Model for Radiology Report Generation
and Conversational Assistance [53.20640629352422]
会話型AIツールは、所定の医療画像に対して臨床的に正しい放射線学レポートを生成し、議論することができる。
RaDialogは、ラジオロジーレポート生成と対話ダイアログのための、初めて徹底的に評価され、公開された大きな視覚言語モデルである。
本手法は,報告生成における最先端の臨床的正確性を実現し,報告の修正や質問への回答などのインタラクティブなタスクにおいて,印象的な能力を示す。
論文 参考訳(メタデータ) (2023-11-30T16:28:40Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Self adaptive global-local feature enhancement for radiology report
generation [10.958641951927817]
グローバル・解剖学的領域の特徴を動的に融合して多粒性放射線学レポートを生成する新しいフレームワーク AGFNet を提案する。
まず,入力胸部X線(CXR)の解剖学的特徴と大域的特徴を抽出する。
そして,領域の特徴とグローバルな特徴を入力として,提案した自己適応型核融合ゲートモジュールは動的に多粒性情報を融合することができる。
最後に、キャプション生成装置は、多粒性特徴により放射線学レポートを生成する。
論文 参考訳(メタデータ) (2022-11-21T11:50:42Z) - Improving Radiology Summarization with Radiograph and Anatomy Prompts [60.30659124918211]
本稿では,印象生成を促進するために,新しい解剖学的拡張型マルチモーダルモデルを提案する。
より詳しくは、まず、解剖学を抽出する一連のルールを構築し、各文にこれらのプロンプトを配置し、解剖学的特徴を強調する。
コントラスト学習モジュールを用いて、これらの2つの表現を全体レベルで整列させ、コアテンションを用いて文レベルで融合させる。
論文 参考訳(メタデータ) (2022-10-15T14:05:03Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Automated Knee X-ray Report Generation [12.732469371097347]
本稿では,過去の放射線検査を活かし,画像とレポートの対応を学習できる枠組みを提案する。
本研究では,言語生成モデルの訓練において,個々の試験のイメージ特徴を集約し,条件入力として使用すると,自動生成試験レポートが生成されることを示す。
論文 参考訳(メタデータ) (2021-05-22T11:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。