論文の概要: Hierarchical and Density-based Causal Clustering
- arxiv url: http://arxiv.org/abs/2411.01250v1
- Date: Sat, 02 Nov 2024 14:01:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:48.660087
- Title: Hierarchical and Density-based Causal Clustering
- Title(参考訳): 階層的および密度に基づく因果クラスタリング
- Authors: Kwangho Kim, Jisu Kim, Larry A. Wasserman, Edward H. Kennedy,
- Abstract要約: 本稿では,既成のアルゴリズムを用いて簡易かつ容易に実装可能なプラグイン推定器を提案する。
さらに,それらの収束率について検討し,因果クラスタリングの付加コストが基本的に結果回帰関数の推定誤差であることを示す。
- 参考スコア(独自算出の注目度): 6.082022112101251
- License:
- Abstract: Understanding treatment effect heterogeneity is vital for scientific and policy research. However, identifying and evaluating heterogeneous treatment effects pose significant challenges due to the typically unknown subgroup structure. Recently, a novel approach, causal k-means clustering, has emerged to assess heterogeneity of treatment effect by applying the k-means algorithm to unknown counterfactual regression functions. In this paper, we expand upon this framework by integrating hierarchical and density-based clustering algorithms. We propose plug-in estimators that are simple and readily implementable using off-the-shelf algorithms. Unlike k-means clustering, which requires the margin condition, our proposed estimators do not rely on strong structural assumptions on the outcome process. We go on to study their rate of convergence, and show that under the minimal regularity conditions, the additional cost of causal clustering is essentially the estimation error of the outcome regression functions. Our findings significantly extend the capabilities of the causal clustering framework, thereby contributing to the progression of methodologies for identifying homogeneous subgroups in treatment response, consequently facilitating more nuanced and targeted interventions. The proposed methods also open up new avenues for clustering with generic pseudo-outcomes. We explore finite sample properties via simulation, and illustrate the proposed methods in voting and employment projection datasets.
- Abstract(参考訳): 治療効果の均一性を理解することは、科学および政策研究にとって不可欠である。
しかし、不均一な治療効果の同定と評価は、典型的には未知のサブグループ構造のために重大な課題を引き起こす。
近年,k-meansアルゴリズムを未知の反事実回帰関数に適用することにより,治療効果の不均一性を評価するために,因果的k-meansクラスタリングという新たな手法が出現している。
本稿では,階層的なクラスタリングアルゴリズムと密度に基づくクラスタリングアルゴリズムを統合することで,この枠組みを拡張した。
本稿では,既成のアルゴリズムを用いて簡易かつ容易に実装可能なプラグイン推定器を提案する。
マージン条件を必要とするk平均クラスタリングとは異なり、提案する推定器は結果過程の強い構造的仮定に依存しない。
収束率について検討し、最小限の規則性条件下では、因果クラスタリングの追加コストは基本的に結果回帰関数の推定誤差であることを示す。
本研究は, 因果クラスタリングフレームワークの能力を著しく拡張し, 治療応答における同種サブグループ同定手法の進歩に寄与し, よりニュアンスで標的とした介入が容易となった。
提案手法はまた、一般的な擬似アウトカムを用いたクラスタリングのための新しい道を開く。
シミュレーションにより有限標本特性を探索し,投票および雇用予測データセットにおける提案手法について述べる。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Causal K-Means Clustering [5.087519744951637]
Causal k-Means Clusteringは、広く使われているk-means Clusteringアルゴリズムを利用して、未知の部分群構造を明らかにする。
既成のアルゴリズムを用いて簡易かつ容易に実装可能なプラグイン推定器を提案する。
提案手法は,複数の治療レベルを有する近代的な結果研究に特に有用である。
論文 参考訳(メタデータ) (2024-05-05T23:59:51Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
サンプル安定性(DECS)により駆動されるディープ埋め込みクラスタリングアルゴリズムを提案する。
具体的には、まずオートエンコーダで初期特徴空間を構築し、次にサンプル安定性に制約されたクラスタ指向の埋め込み機能を学ぶ。
5つのデータセットに対する実験結果から,提案手法は最先端のクラスタリング手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-01-29T09:19:49Z) - Simple and Scalable Algorithms for Cluster-Aware Precision Medicine [0.0]
共同クラスタリングと埋め込みに対するシンプルでスケーラブルなアプローチを提案する。
この新しいクラスタ対応の埋め込みアプローチは、現在の共同埋め込みとクラスタリング法の複雑さと限界を克服する。
当社のアプローチでは,ユーザが希望するクラスタ数を選択する必要はなく,階層的にクラスタ化された埋め込みの解釈可能なデンドログラムを生成する。
論文 参考訳(メタデータ) (2022-11-29T19:27:26Z) - Significance-Based Categorical Data Clustering [7.421725101465365]
我々は、カテゴリデータクラスタリングにおいて、重要度に基づく目的関数として機能するテスト統計を導出するために、確率比テストを使用する。
モンテカルロ探索手法を用いて重要度に基づく目的関数を最適化する新しいクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-11-08T02:06:31Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。