論文の概要: Uncertainty measurement for complex event prediction in safety-critical systems
- arxiv url: http://arxiv.org/abs/2411.01289v1
- Date: Sat, 02 Nov 2024 15:51:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:09.702894
- Title: Uncertainty measurement for complex event prediction in safety-critical systems
- Title(参考訳): 安全クリティカルシステムにおける複雑な事象予測の不確実性測定
- Authors: Maria J. P. Peixoto, Akramul Azim,
- Abstract要約: 複合イベント処理(CEP)の不確実性は、組込みおよび安全クリティカルシステムにとって重要である。
本稿では,事象の知覚と予測の不確実性を測定する方法を示す。
我々は、研究と研究の分野で非常に有望な成果を提示し、議論する。
- 参考スコア(独自算出の注目度): 0.36832029288386137
- License:
- Abstract: Complex events originate from other primitive events combined according to defined patterns and rules. Instead of using specialists' manual work to compose the model rules, we use machine learning (ML) to self-define these patterns and regulations based on incoming input data to produce the desired complex event. Complex events processing (CEP) uncertainty is critical for embedded and safety-critical systems. This paper exemplifies how we can measure uncertainty for the perception and prediction of events, encompassing embedded systems that can also be critical to safety. Then, we propose an approach (ML\_CP) incorporating ML and sensitivity analysis that verifies how the output varies according to each input parameter. Furthermore, our model also measures the uncertainty associated with the predicted complex event. Therefore, we use conformal prediction to build prediction intervals, as the model itself has uncertainties, and the data has noise. Also, we tested our approach with classification (binary and multi-level) and regression problems test cases. Finally, we present and discuss our results, which are very promising within our field of research and work.
- Abstract(参考訳): 複雑なイベントは、定義されたパターンとルールに合わせた他の原始的なイベントに由来する。
モデルルールを構成するために専門家の手作業を使う代わりに、機械学習(ML)を使用してこれらのパターンと規則を入力データに基づいて自己定義し、望ましい複雑なイベントを生成する。
複合イベント処理(CEP)の不確実性は、組込みおよび安全クリティカルシステムにとって重要である。
本稿では,事象の認識と予測の不確かさを計測する方法を実証する。
そこで本稿では,MLと感度分析を取り入れたML\_CPを提案する。
さらに,予測された複合事象に関する不確実性も測定した。
したがって、モデル自体に不確実性があり、データにノイズがあるため、共形予測を用いて予測間隔を構築する。
また,分類(二段階,多段階)および回帰問題テストケースを用いて,本手法を検証した。
最後に、研究と研究の分野で非常に有望な成果を提示し、議論する。
関連論文リスト
- Advancing Machine Learning in Industry 4.0: Benchmark Framework for Rare-event Prediction in Chemical Processes [0.0]
本稿では,様々な複雑さのMLアルゴリズムを比較し,レアイベント予測のための新しい総合的ベンチマークフレームワークを提案する。
異常事象を予測するための最適ML戦略を特定し,より安全で信頼性の高いプラント操作を実現する。
論文 参考訳(メタデータ) (2024-08-31T15:41:10Z) - Event prediction and causality inference despite incomplete information [0.41232474244672235]
我々は,データポイントのシーケンス内で発生した事象を予測し,説明する上での課題について検討した。
特に、イベントの発生を引き起こす未知のトリガーが、非攻撃的で、マスク付き、ノイズの多いデータポイントから成り立つシナリオに注目しました。
分析、シミュレーション、機械学習のアプローチを組み合わせて、調査、定量化、ソリューションを提供しました。
論文 参考訳(メタデータ) (2024-06-09T19:23:20Z) - Scope Compliance Uncertainty Estimate [0.4262974002462632]
SafeMLはそのような監視を行うためのモデルに依存しないアプローチである。
この研究は、二項決定を連続計量に変換することによってこれらの制限に対処する。
論文 参考訳(メタデータ) (2023-12-17T19:44:20Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
SMURF-THPは,変圧器ホークス過程を学習し,予測の不確かさを定量化するスコアベース手法である。
具体的には、SMURF-THPは、スコアマッチング目標に基づいて、イベントの到着時刻のスコア関数を学習する。
我々は,イベントタイプ予測と到着時刻の不確実性定量化の両方において,広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-25T03:33:45Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
我々は回帰アルゴリズムとモデル予測の周囲に定義された区間内に存在する真のラベルの確率を計算するリスク評価タスクに焦点をあてる。
そこで,本研究では,正のラベルを所定の確率で含むことが保証される予測区間を提供する共形予測手法を用いてリスク評価問題を解決する。
論文 参考訳(メタデータ) (2023-10-05T13:57:24Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
複雑な力学系のモデルにおける不確実性を捉えることは、安全なコントローラの設計に不可欠である。
いくつかのアプローチでは、安全と到達可能性に関する時間的仕様を満たすポリシーを形式的な抽象化を用いて合成する。
我々の貢献は、ノイズ、不確実なパラメータ、外乱を含む連続状態モデルに対する新しい抽象的制御法である。
論文 参考訳(メタデータ) (2022-10-12T07:57:03Z) - Alignment-based conformance checking over probabilistic events [4.060731229044571]
本稿では、重み付きトレースモデルと重み付きアライメントコスト関数と、イベントデータに対する信頼度を制御するカスタムしきい値パラメータを導入する。
結果のアルゴリズムは、プロセスモデルとよりよく一致した、低いが十分に高い確率のアクティビティを考慮します。
論文 参考訳(メタデータ) (2022-09-09T14:07:37Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming [70.06301658267125]
イベント認識(CER)システムは、事前に定義されたイベントパターンを使用して、ストリーミングタイムスタンプデータセットで発生を検出する。
本稿では,複雑なイベントパターンによる確率論的推論を,イベント計算で重み付けされたルールの形で行うことができるAnswer Set Programming(ASP)に基づくシステムを提案する。
その結果, 効率と予測の両面で, 新たなアプローチの優位性が示された。
論文 参考訳(メタデータ) (2021-03-31T23:16:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。