論文の概要: Marginal Causal Flows for Validation and Inference
- arxiv url: http://arxiv.org/abs/2411.01295v1
- Date: Sat, 02 Nov 2024 16:04:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:36.403324
- Title: Marginal Causal Flows for Validation and Inference
- Title(参考訳): Marginal Causal Flows for Validation and Inference
- Authors: Daniel de Vassimon Manela, Laura Battaglia, Robin J. Evans,
- Abstract要約: 複雑なデータから得られる結果に対する介入の限界因果効果を調べることは依然として困難である。
Frugal Flowsは、正規化フローを使用してデータ生成過程を柔軟に学習する新しい確率ベース機械学習モデルである。
シミュレーションと実世界の両方のデータセットで実験を行った。
- 参考スコア(独自算出の注目度): 3.547529079746247
- License:
- Abstract: Investigating the marginal causal effect of an intervention on an outcome from complex data remains challenging due to the inflexibility of employed models and the lack of complexity in causal benchmark datasets, which often fail to reproduce intricate real-world data patterns. In this paper we introduce Frugal Flows, a novel likelihood-based machine learning model that uses normalising flows to flexibly learn the data-generating process, while also directly inferring the marginal causal quantities from observational data. We propose that these models are exceptionally well suited for generating synthetic data to validate causal methods. They can create synthetic datasets that closely resemble the empirical dataset, while automatically and exactly satisfying a user-defined average treatment effect. To our knowledge, Frugal Flows are the first generative model to both learn flexible data representations and also exactly parameterise quantities such as the average treatment effect and the degree of unobserved confounding. We demonstrate the above with experiments on both simulated and real-world datasets.
- Abstract(参考訳): 複雑なデータから得られる結果に対する介入の限界因果効果を調べることは、採用モデルの柔軟性と、複雑な実世界のデータパターンを再現できないような因果ベンチマークデータセットの複雑さの欠如により、依然として困難である。
本稿では、正規化フローを用いてデータ生成過程を柔軟に学習する新しい確率ベース機械学習モデルであるFrugal Flowsを紹介し、観測データから限界因果量を直接推定する。
これらのモデルは、因果的手法を検証するために合成データを生成するのに非常に適していると提案する。
彼らは、ユーザーが定義した平均治療効果を自動的かつ正確に満足しながら、経験的データセットによく似た合成データセットを作成することができる。
我々の知る限り、Frugal Flowsはフレキシブルなデータ表現を学習する最初の生成モデルであり、平均処理効果や観測不能なコンファウンディングの度合いなどのパラメータ化量も正確に学習する。
シミュレーションと実世界の両方のデータセットで実験を行った。
関連論文リスト
- Synthetic Simplicity: Unveiling Bias in Medical Data Augmentation [0.7499722271664144]
医用画像などのデータ共有分野において、合成データがますます重要になっている。
下流のニューラルネットワークは、しばしば、データソースとタスクラベルの間に強い相関があるときに、実データと合成データの急激な区別を利用する。
このエクスプロイトは、真のタスク関連の複雑さではなく、表面的な特徴に過度に依存する、テクスティシビティ単純性バイアスとして現れます。
論文 参考訳(メタデータ) (2024-07-31T15:14:17Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Mind the Gap Between Synthetic and Real: Utilizing Transfer Learning to Probe the Boundaries of Stable Diffusion Generated Data [2.6016285265085526]
学生モデルは、実際のデータで訓練されたモデルと比較して、精度が著しく低下している。
実データまたは合成データを用いてこれらのレイヤをトレーニングすることにより、ドロップが主にモデルの最終的なレイヤに由来することを明らかにする。
この結果から,実際のトレーニングデータの量とモデルの精度とのトレードオフの改善が示唆された。
論文 参考訳(メタデータ) (2024-05-06T07:51:13Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Causal-TGAN: Generating Tabular Data Using Causal Generative Adversarial
Networks [7.232789848964222]
因果モデルCausal Tabular Generative Neural Network (Causal-TGAN) を提案し,合成データを生成する。
シミュレーションデータセットと実データセットの両方の実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2021-04-21T17:59:41Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
ハイパウシティシナリオにおけるデータ分布の学習を容易にする新しいフレームワークを提案する。
提案手法は,不完全データから学習過程を協調最適化タスクとして行うことに由来する。
論文 参考訳(メタデータ) (2021-04-03T20:57:57Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。