False Data Injection Attack Detection in Edge-based Smart Metering Networks with Federated Learning
- URL: http://arxiv.org/abs/2411.01313v2
- Date: Wed, 06 Nov 2024 18:30:25 GMT
- Title: False Data Injection Attack Detection in Edge-based Smart Metering Networks with Federated Learning
- Authors: Md Raihan Uddin, Ratun Rahman, Dinh C. Nguyen,
- Abstract summary: This paper proposes a new privacy-preserved false data injection (FDI) attack detection by developing an efficient federated learning framework.
Distributed edge servers located at the network edge run an ML-based FDI attack detection model and share the trained model with the grid operator.
- Score: 1.2026018242953707
- License:
- Abstract: Smart metering networks are increasingly susceptible to cyber threats, where false data injection (FDI) appears as a critical attack. Data-driven-based machine learning (ML) methods have shown immense benefits in detecting FDI attacks via data learning and prediction abilities. Literature works have mostly focused on centralized learning and deploying FDI attack detection models at the control center, which requires data collection from local utilities like meters and transformers. However, this data sharing may raise privacy concerns due to the potential disclosure of household information like energy usage patterns. This paper proposes a new privacy-preserved FDI attack detection by developing an efficient federated learning (FL) framework in the smart meter network with edge computing. Distributed edge servers located at the network edge run an ML-based FDI attack detection model and share the trained model with the grid operator, aiming to build a strong FDI attack detection model without data sharing. Simulation results demonstrate the efficiency of our proposed FL method over the conventional method without collaboration.
Related papers
- FedMSE: Federated learning for IoT network intrusion detection [0.0]
The rise of IoT has expanded the cyber attack surface, making traditional centralized machine learning methods insufficient due to concerns about data availability, computational resources, transfer costs, and especially privacy preservation.
A semi-supervised federated learning model was developed to overcome these issues, combining the Shrink Autoencoder and Centroid one-class classifier (SAE-CEN)
This approach enhances the performance of intrusion detection by effectively representing normal network data and accurately identifying anomalies in the decentralized strategy.
arXiv Detail & Related papers (2024-10-18T02:23:57Z) - Ungeneralizable Examples [70.76487163068109]
Current approaches to creating unlearnable data involve incorporating small, specially designed noises.
We extend the concept of unlearnable data to conditional data learnability and introduce textbfUntextbfGeneralizable textbfExamples (UGEs)
UGEs exhibit learnability for authorized users while maintaining unlearnability for potential hackers.
arXiv Detail & Related papers (2024-04-22T09:29:14Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - IT Intrusion Detection Using Statistical Learning and Testbed
Measurements [8.493936898320673]
We study automated intrusion detection in an IT infrastructure, specifically the problem of identifying the start of an attack.
We apply statistical learning methods, including Hidden Markov Model (HMM), Long Short-Term Memory (LSTM), and Random Forest (RFC)
We find that both HMM and LSTM can be effective in predicting attack start time, attack type, and attack actions.
arXiv Detail & Related papers (2024-02-20T15:25:56Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Federated Learning Based Distributed Localization of False Data
Injection Attacks on Smart Grids [5.705281336771011]
False data injection attack (FDIA) is one of the classes of attacks that target the smart measurement devices by injecting malicious data.
We propose a federated learning-based scheme combined with a hybrid deep neural network architecture.
We validate the proposed architecture by extensive simulations on the IEEE 57, 118, and 300 bus systems and real electricity load data.
arXiv Detail & Related papers (2023-06-17T20:29:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local.
We propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system.
It is an efficient and effective algorithm that compresses both upstream and downstream communications.
arXiv Detail & Related papers (2021-06-17T12:30:40Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications.
It is impractical to send raw data of devices to UAV servers for model training.
In this paper, we develop an asynchronous federated learning framework for multi-UAV-enabled networks.
arXiv Detail & Related papers (2020-11-28T18:58:34Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.