FedMSE: Federated learning for IoT network intrusion detection
- URL: http://arxiv.org/abs/2410.14121v1
- Date: Fri, 18 Oct 2024 02:23:57 GMT
- Title: FedMSE: Federated learning for IoT network intrusion detection
- Authors: Van Tuan Nguyen, Razvan Beuran,
- Abstract summary: The rise of IoT has expanded the cyber attack surface, making traditional centralized machine learning methods insufficient due to concerns about data availability, computational resources, transfer costs, and especially privacy preservation.
A semi-supervised federated learning model was developed to overcome these issues, combining the Shrink Autoencoder and Centroid one-class classifier (SAE-CEN)
This approach enhances the performance of intrusion detection by effectively representing normal network data and accurately identifying anomalies in the decentralized strategy.
- Score: 0.0
- License:
- Abstract: This paper proposes a novel federated learning approach for improving IoT network intrusion detection. The rise of IoT has expanded the cyber attack surface, making traditional centralized machine learning methods insufficient due to concerns about data availability, computational resources, transfer costs, and especially privacy preservation. A semi-supervised federated learning model was developed to overcome these issues, combining the Shrink Autoencoder and Centroid one-class classifier (SAE-CEN). This approach enhances the performance of intrusion detection by effectively representing normal network data and accurately identifying anomalies in the decentralized strategy. Additionally, a mean square error-based aggregation algorithm (MSEAvg) was introduced to improve global model performance by prioritizing more accurate local models. The results obtained in our experimental setup, which uses various settings relying on the N-BaIoT dataset and Dirichlet distribution, demonstrate significant improvements in real-world heterogeneous IoT networks in detection accuracy from 93.98$\pm$2.90 to 97.30$\pm$0.49, reduced learning costs when requiring only 50\% of gateways participating in the training process, and robustness in large-scale networks.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Strengthening Network Intrusion Detection in IoT Environments with Self-Supervised Learning and Few Shot Learning [1.0678175996321808]
The Internet of Things (IoT) has been introduced as a breakthrough technology that integrates intelligence into everyday objects.
As the IoT networks grow and expand, they become more susceptible to cybersecurity attacks.
This paper introduces a novel intrusion detection approach designed to address these challenges.
arXiv Detail & Related papers (2024-06-04T06:30:22Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
A common approach to implementing AI-based Intrusion Detection systems (IDSs) in distributed IoT systems is in a centralised manner.
This approach may violate data privacy and prohibit IDS scalability.
We design an experiment representative of the real world and evaluate the performance of an FL-based IDS.
arXiv Detail & Related papers (2023-06-05T09:08:24Z) - Network Anomaly Detection Using Federated Learning [0.483420384410068]
We introduce a robust and scalable framework that enables efficient network anomaly detection.
We leverage federated learning, in which multiple participants train a global model jointly.
The proposed method performs better than baseline machine learning techniques on the UNSW-NB15 data set.
arXiv Detail & Related papers (2023-03-13T20:16:30Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Robust Attack Detection Approach for IIoT Using Ensemble Classifier [0.0]
The objective is to develop a two-phase anomaly detection model to enhance the reliability of an IIoT network.
The proposed model is tested on standard IoT attack outliers such as WUSTL_IIOT-2018, N_BaIoT, and Bot_IoT.
The results also demonstrate that the proposed model outperforms traditional techniques and thus improves the reliability of an IIoT network.
arXiv Detail & Related papers (2021-01-30T07:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.