Cloned Identity Detection in Social-Sensor Clouds based on Incomplete Profiles
- URL: http://arxiv.org/abs/2411.01329v1
- Date: Sat, 02 Nov 2024 18:23:22 GMT
- Title: Cloned Identity Detection in Social-Sensor Clouds based on Incomplete Profiles
- Authors: Ahmed Alharbi, Hai Dong, Xun Yi, Prabath Abeysekara,
- Abstract summary: We propose a novel approach to effectively detect cloned identities of social-sensor cloud service providers (i.e. social media users) in the face of non-privacy-sensitive profile data.
Named ICD-IPD, the proposed approach first extracts account pairs with similar usernames or screen names from a given set of user accounts collected from a social media.
It then learns a multi-view representation associated with a given account and extracts two categories of features for every single account.
- Score: 5.411585313453657
- License:
- Abstract: We propose a novel approach to effectively detect cloned identities of social-sensor cloud service providers (i.e. social media users) in the face of incomplete non-privacy-sensitive profile data. Named ICD-IPD, the proposed approach first extracts account pairs with similar usernames or screen names from a given set of user accounts collected from a social media. It then learns a multi-view representation associated with a given account and extracts two categories of features for every single account. These two categories of features include profile and Weighted Generalised Canonical Correlation Analysis (WGCCA)-based features that may potentially contain missing values. To counter the impact of such missing values, a missing value imputer will next impute the missing values of the aforementioned profile and WGCCA-based features. After that, the proposed approach further extracts two categories of augmented features for each account pair identified previously, namely, 1) similarity and 2) differences-based features. Finally, these features are concatenated and fed into a Light Gradient Boosting Machine classifier to detect identity cloning. We evaluated and compared the proposed approach against the existing state-of-the-art identity cloning approaches and other machine or deep learning models atop a real-world dataset. The experimental results show that the proposed approach outperforms the state-of-the-art approaches and models in terms of Precision, Recall and F1-score.
Related papers
- Attribute-Aware Deep Hashing with Self-Consistency for Large-Scale
Fine-Grained Image Retrieval [65.43522019468976]
We propose attribute-aware hashing networks with self-consistency for generating attribute-aware hash codes.
We develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors.
Our models are equipped with a feature decorrelation constraint upon these attribute vectors to strengthen their representative abilities.
arXiv Detail & Related papers (2023-11-21T08:20:38Z) - Free Lunch for Gait Recognition: A Novel Relation Descriptor [39.01813894844141]
We propose a novel $textbfRelation Descriptor$ that captures relations between test gaits and pre-selected gait anchors.
We evaluate the effectiveness of our method on the popular GREW, Gait3D, OU-M, CASIA-B, and CCPG.
arXiv Detail & Related papers (2023-08-22T15:06:14Z) - Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective [84.24742313520811]
Person Re-IDentification (Re-ID) as a retrieval task, has achieved tremendous development over the past decade.
We propose a new baseline ProNet, which innovatively reserves the function of the classifier at the inference stage.
Experiments on four benchmarks demonstrate that our proposed ProNet is simple yet effective, and significantly beats previous baselines.
arXiv Detail & Related papers (2023-08-21T13:38:10Z) - Exploring Fine-Grained Representation and Recomposition for Cloth-Changing Person Re-Identification [78.52704557647438]
We propose a novel FIne-grained Representation and Recomposition (FIRe$2$) framework to tackle both limitations without any auxiliary annotation or data.
Experiments demonstrate that FIRe$2$ can achieve state-of-the-art performance on five widely-used cloth-changing person Re-ID benchmarks.
arXiv Detail & Related papers (2023-08-21T12:59:48Z) - Feature Completion Transformer for Occluded Person Re-identification [25.159974510754992]
Occluded person re-identification (Re-ID) is a challenging problem due to the destruction of occluders.
We propose a Feature Completion Transformer (FCFormer) to implicitly complement the semantic information of occluded parts in the feature space.
FCFormer achieves superior performance and outperforms the state-of-the-art methods by significant margins on occluded datasets.
arXiv Detail & Related papers (2023-03-03T01:12:57Z) - Learning Classifiers of Prototypes and Reciprocal Points for Universal
Domain Adaptation [79.62038105814658]
Universal Domain aims to transfer the knowledge between datasets by handling two shifts: domain-shift and categoryshift.
Main challenge is correctly distinguishing the unknown target samples while adapting the distribution of known class knowledge from source to target.
Most existing methods approach this problem by first training the target adapted known and then relying on the single threshold to distinguish unknown target samples.
arXiv Detail & Related papers (2022-12-16T09:01:57Z) - Identity Documents Authentication based on Forgery Detection of
Guilloche Pattern [2.606834301724095]
An authentication model for identity documents based on forgery detection of guilloche patterns is proposed.
Experiments are conducted in order to analyze and identify the most proper parameters to achieve higher authentication performance.
arXiv Detail & Related papers (2022-06-22T11:37:10Z) - NPS-AntiClone: Identity Cloning Detection based on Non-Privacy-Sensitive
User Profile Data [7.257277734039782]
Social sensing is a paradigm that allows crowdsourcing data from humans and devices.
Attackers intrude social-sensor clouds by cloning SocSen service providers' user profiles.
We propose a novel unsupervised SocSen service provider identity cloning detection approach, NPS-AntiClone.
arXiv Detail & Related papers (2021-09-30T14:49:07Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Joint Item Recommendation and Attribute Inference: An Adaptive Graph
Convolutional Network Approach [61.2786065744784]
In recommender systems, users and items are associated with attributes, and users show preferences to items.
As annotating user (item) attributes is a labor intensive task, the attribute values are often incomplete with many missing attribute values.
We propose an Adaptive Graph Convolutional Network (AGCN) approach for joint item recommendation and attribute inference.
arXiv Detail & Related papers (2020-05-25T10:50:01Z) - A Convolutional Baseline for Person Re-Identification Using Vision and
Language Descriptions [24.794592610444514]
In real-world surveillance scenarios, frequently no visual information will be available about the queried person.
A two stream deep convolutional neural network framework supervised by cross entropy loss is presented.
The learnt visual representations are more robust and perform 22% better during retrieval as compared to a single modality system.
arXiv Detail & Related papers (2020-02-20T10:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.