HiMemFormer: Hierarchical Memory-Aware Transformer for Multi-Agent Action Anticipation
- URL: http://arxiv.org/abs/2411.01455v1
- Date: Sun, 03 Nov 2024 06:33:37 GMT
- Title: HiMemFormer: Hierarchical Memory-Aware Transformer for Multi-Agent Action Anticipation
- Authors: Zirui Wang, Xinran Zhao, Simon Stepputtis, Woojun Kim, Tongshuang Wu, Katia Sycara, Yaqi Xie,
- Abstract summary: We present the Hierarchical Memory-Aware Transformer (HiMemFormer), a transformer-based model for online multi-agent action anticipation.
HiMemFormer uniquely applies the global context with agent-specific preferences to avoid noisy or redundant information in action anticipation.
- Score: 39.92192685576485
- License:
- Abstract: Understanding and predicting human actions has been a long-standing challenge and is a crucial measure of perception in robotics AI. While significant progress has been made in anticipating the future actions of individual agents, prior work has largely overlooked a key aspect of real-world human activity -- interactions. To address this gap in human-like forecasting within multi-agent environments, we present the Hierarchical Memory-Aware Transformer (HiMemFormer), a transformer-based model for online multi-agent action anticipation. HiMemFormer integrates and distributes global memory that captures joint historical information across all agents through a transformer framework, with a hierarchical local memory decoder that interprets agent-specific features based on these global representations using a coarse-to-fine strategy. In contrast to previous approaches, HiMemFormer uniquely hierarchically applies the global context with agent-specific preferences to avoid noisy or redundant information in multi-agent action anticipation. Extensive experiments on various multi-agent scenarios demonstrate the significant performance of HiMemFormer, compared with other state-of-the-art methods.
Related papers
- HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model [39.169389255970806]
HiAgent is a framework that leverages subgoals as memory chunks to manage the working memory of Large Language Model (LLM)-based agents hierarchically.
Results show that HiAgent achieves a twofold increase in success rate and reduces the average number of steps required by 3.8.
arXiv Detail & Related papers (2024-08-18T17:59:49Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Deep Multimodal Fusion for Generalizable Person Re-identification [15.250738959921872]
DMF is a Deep Multimodal Fusion network for the general scenarios on person re-identification task.
Rich semantic knowledge is introduced to assist in feature representation learning during the pre-training stage.
A realistic dataset is adopted to fine-tine the pre-trained model for distribution alignment with real-world.
arXiv Detail & Related papers (2022-11-02T07:42:48Z) - Beyond Rewards: a Hierarchical Perspective on Offline Multiagent
Behavioral Analysis [14.656957226255628]
We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains.
Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or models, and can be trained using entirely offline observational data.
arXiv Detail & Related papers (2022-06-17T23:07:33Z) - Enhancing Multi-Robot Perception via Learned Data Association [37.866254392010454]
We address the multi-robot collaborative perception problem, specifically in the context of multi-view infilling for distributed semantic segmentation.
We propose the Multi-Agent Infilling Network: an neural architecture that can be deployed to each agent in a robotic swarm.
Specifically, each robot is in charge of locally encoding and decoding visual information, and an neural mechanism allows for an uncertainty-aware and context-based exchange of intermediate features.
arXiv Detail & Related papers (2021-07-01T22:45:26Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.