Adaptive Domain Learning for Cross-domain Image Denoising
- URL: http://arxiv.org/abs/2411.01472v1
- Date: Sun, 03 Nov 2024 08:08:26 GMT
- Title: Adaptive Domain Learning for Cross-domain Image Denoising
- Authors: Zian Qian, Chenyang Qi, Ka Lung Law, Hao Fu, Chenyang Lei, Qifeng Chen,
- Abstract summary: We present a novel adaptive domain learning scheme for cross-domain image denoising.
We use existing data from different sensors (source domain) plus a small amount of data from the new sensor (target domain)
The ADL training scheme automatically removes the data in the source domain that are harmful to fine-tuning a model for the target domain.
Also, we introduce a modulation module to adopt sensor-specific information (sensor type and ISO) to understand input data for image denoising.
- Score: 57.4030317607274
- License:
- Abstract: Different camera sensors have different noise patterns, and thus an image denoising model trained on one sensor often does not generalize well to a different sensor. One plausible solution is to collect a large dataset for each sensor for training or fine-tuning, which is inevitably time-consuming. To address this cross-domain challenge, we present a novel adaptive domain learning (ADL) scheme for cross-domain RAW image denoising by utilizing existing data from different sensors (source domain) plus a small amount of data from the new sensor (target domain). The ADL training scheme automatically removes the data in the source domain that are harmful to fine-tuning a model for the target domain (some data are harmful as adding them during training lowers the performance due to domain gaps). Also, we introduce a modulation module to adopt sensor-specific information (sensor type and ISO) to understand input data for image denoising. We conduct extensive experiments on public datasets with various smartphone and DSLR cameras, which show our proposed model outperforms prior work on cross-domain image denoising, given a small amount of image data from the target domain sensor.
Related papers
- MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
We introduce a new benchmark, the Multi-Sensor SIDD dataset, which is the first raw-domain dataset designed to evaluate the sensor transferability of denoising models.
We propose a sensor consistency training framework that enables denoising models to learn the sensor-invariant features.
arXiv Detail & Related papers (2024-11-18T13:32:59Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - Unsupervised Few-Shot Continual Learning for Remote Sensing Image Scene Classification [14.758282519523744]
Unsupervised flat-wide learning approach (UNISA) for unsupervised few-shot continual learning approaches of remote sensing image scene classifications.
Our numerical study with remote sensing image scene datasets and a hyperspectral dataset confirms the advantages of our solution.
arXiv Detail & Related papers (2024-06-04T03:06:41Z) - Sensitivity-Informed Augmentation for Robust Segmentation [21.609070498399863]
Internal noises such as variations in camera quality or lens distortion can affect the performance of segmentation models.
We present an efficient, adaptable, and gradient-free method to enhance the robustness of learning-based segmentation models across training.
arXiv Detail & Related papers (2024-06-03T15:25:45Z) - Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions.
We propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training.
arXiv Detail & Related papers (2023-09-03T16:02:01Z) - Augmenting Deep Learning Adaptation for Wearable Sensor Data through
Combined Temporal-Frequency Image Encoding [4.458210211781739]
We present a novel modified-recurrent plot-based image representation that seamlessly integrates both temporal and frequency domain information.
We evaluate the proposed method using accelerometer-based activity recognition data and a pretrained ResNet model, and demonstrate its superior performance compared to existing approaches.
arXiv Detail & Related papers (2023-07-03T09:29:27Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
Seasonal Contrast (SeCo) is an effective pipeline to leverage unlabeled data for in-domain pre-training of re-mote sensing representations.
SeCo will be made public to facilitate transfer learning and enable rapid progress in re-mote sensing applications.
arXiv Detail & Related papers (2021-03-30T18:26:39Z) - Background Adaptive Faster R-CNN for Semi-Supervised Convolutional
Object Detection of Threats in X-Ray Images [64.39996451133268]
We present a semi-supervised approach for threat recognition which we call Background Adaptive Faster R-CNN.
This approach is a training method for two-stage object detectors which uses Domain Adaptation methods from the field of deep learning.
Two domain discriminators, one for discriminating object proposals and one for image features, are adversarially trained to prevent encoding domain-specific information.
This can reduce threat detection false alarm rates by matching the statistics of extracted features from hand-collected backgrounds to real world data.
arXiv Detail & Related papers (2020-10-02T21:05:13Z) - CycleISP: Real Image Restoration via Improved Data Synthesis [166.17296369600774]
We present a framework that models camera imaging pipeline in forward and reverse directions.
By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets.
arXiv Detail & Related papers (2020-03-17T15:20:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.