Improving Interpretability and Robustness for the Detection of AI-Generated Images
- URL: http://arxiv.org/abs/2406.15035v1
- Date: Fri, 21 Jun 2024 10:33:09 GMT
- Title: Improving Interpretability and Robustness for the Detection of AI-Generated Images
- Authors: Tatiana Gaintseva, Laida Kushnareva, German Magai, Irina Piontkovskaya, Sergey Nikolenko, Martin Benning, Serguei Barannikov, Gregory Slabaugh,
- Abstract summary: We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
- Score: 6.116075037154215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With growing abilities of generative models, artificial content detection becomes an increasingly important and difficult task. However, all popular approaches to this problem suffer from poor generalization across domains and generative models. In this work, we focus on the robustness of AI-generated image (AIGI) detectors. We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings and show how to interpret them, shedding light on how images produced by various AI generators differ from real ones. Next we propose two ways to improve robustness: based on removing harmful components of the embedding vector and based on selecting the best performing attention heads in the image encoder model. Our methods increase the mean out-of-distribution (OOD) classification score by up to 6% for cross-model transfer. We also propose a new dataset for AIGI detection and use it in our evaluation; we believe this dataset will help boost further research. The dataset and code are provided as a supplement.
Related papers
- A Bias-Free Training Paradigm for More General AI-generated Image Detection [15.421102443599773]
A well-designed forensic detector should detect generator specific artifacts rather than reflect data biases.
We propose B-Free, a bias-free training paradigm, where fake images are generated from real ones.
We show significant improvements in both generalization and robustness over state-of-the-art detectors.
arXiv Detail & Related papers (2024-12-23T15:54:32Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Addressing Vulnerabilities in AI-Image Detection: Challenges and Proposed Solutions [0.0]
This study evaluates the effectiveness of convolutional neural networks (CNNs) and DenseNet architectures for detecting AI-generated images.
We analyze the impact of updates and modifications such as Gaussian blurring, prompt text changes, and Low-Rank Adaptation (LoRA) on detection accuracy.
The findings highlight vulnerabilities in current detection methods and propose strategies to enhance the robustness and reliability of AI-image detection systems.
arXiv Detail & Related papers (2024-11-26T06:35:26Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
We propose AIDE (AI-generated Image DEtector with Hybrid Features) to detect AI-generated images.
AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.