MoCE: Adaptive Mixture of Contextualization Experts for Byte-based Neural Machine Translation
- URL: http://arxiv.org/abs/2411.01474v1
- Date: Sun, 03 Nov 2024 08:15:43 GMT
- Title: MoCE: Adaptive Mixture of Contextualization Experts for Byte-based Neural Machine Translation
- Authors: Langlin Huang, Mengyu Bu, Yang Feng,
- Abstract summary: Byte-based machine translation systems have shown significant potential in massively multilingual settings.
Unicode encoding, which maps each character to specific byte(s), eliminates the emergence of unknown words, even in new languages.
Local contextualization has proven effective in assigning initial semantics to tokens, improving sentence comprehension.
We propose Adaptive MultiScale-Headed Attention (Ada-MSHA), adaptively selecting and mixing attention heads, which are treated as contextualization experts.
- Score: 13.70446799743065
- License:
- Abstract: Byte-based machine translation systems have shown significant potential in massively multilingual settings. Unicode encoding, which maps each character to specific byte(s), eliminates the emergence of unknown words, even in new languages, enabling broad language scalability. However, byte-level tokenization results in sequences that are hard to interpret due to limited semantic information per byte. Local contextualization has proven effective in assigning initial semantics to tokens, improving sentence comprehension. Nevertheless, variations in encoding rules across languages necessitate an adaptive approach for effective contextualization. To this end, we propose Adaptive MultiScale-Headed Attention (Ada-MSHA), adaptively selecting and mixing attention heads, which are treated as contextualization experts. This enhances the flexibility of contextualization scales and improves the potential to discover a better strategy than previous methods. Experiment results show that our method outperforms existing methods without extensive manual adjustment of hyper-parameters and surpasses subword-based models with fewer parameters in Ted-59 dataset. Our code is available at https://github.com/ictnlp/MoCE.
Related papers
- MAGNET: Improving the Multilingual Fairness of Language Models with Adaptive Gradient-Based Tokenization [81.83460411131931]
In multilingual settings, non-Latin scripts and low-resource languages are usually disadvantaged in terms of language models' utility, efficiency, and cost.
We propose multilingual adaptive gradient-based tokenization to reduce over-segmentation via adaptive gradient-based subword tokenization.
arXiv Detail & Related papers (2024-07-11T18:59:21Z) - Integrating Multi-scale Contextualized Information for Byte-based Neural Machine Translation [14.826948179996695]
Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models.
We propose the Multi-Scale Contextualization (MSC) method, which learns contextualized information of varying scales across different hidden state dimensions.
Experiments show that MSC significantly outperforms subword-based and other byte-based methods in both multilingual and out-of-domain scenarios.
arXiv Detail & Related papers (2024-05-29T17:19:04Z) - MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling [70.34758460372629]
We introduce a new paradigm that encodes the same information with segments of consistent size across diverse languages.
MYTE produces shorter encodings for all 99 analyzed languages.
This, in turn, improves multilingual LM performance and diminishes the perplexity gap throughout diverse languages.
arXiv Detail & Related papers (2024-03-15T21:21:11Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP.
We study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages.
Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups.
arXiv Detail & Related papers (2023-04-18T09:58:34Z) - Local Byte Fusion for Neural Machine Translation [19.16966721276286]
Subword tokenization schemes are the dominant technique used in current NLP models.
Byte-based methods i.e. tokenization into byte sequences are an alternative.
Experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over traditional models.
arXiv Detail & Related papers (2022-05-23T17:49:02Z) - A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task
Learning [8.052271364177988]
Subword tokenization is a commonly used input pre-processing step in most recent NLP models.
We propose a vocabulary-free neural tokenizer by distilling segmentation information from subword tokenization.
Our tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks.
arXiv Detail & Related papers (2022-04-22T16:50:49Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
We present the fundamentals behind the next version of the Perspective API from Google Jigsaw.
At the heart of the approach is a single multilingual token-free Charformer model.
We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings.
arXiv Detail & Related papers (2022-02-22T20:55:31Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
We investigate three categories of text augmentation methodologies which perform changes on the syntax.
We compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families.
Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT.
arXiv Detail & Related papers (2021-11-18T10:52:48Z) - Evaluating the Morphosyntactic Well-formedness of Generated Texts [88.20502652494521]
We propose L'AMBRE -- a metric to evaluate the morphosyntactic well-formedness of text.
We show the effectiveness of our metric on the task of machine translation through a diachronic study of systems translating into morphologically-rich languages.
arXiv Detail & Related papers (2021-03-30T18:02:58Z) - Intrinsic Probing through Dimension Selection [69.52439198455438]
Most modern NLP systems make use of pre-trained contextual representations that attain astonishingly high performance on a variety of tasks.
Such high performance should not be possible unless some form of linguistic structure inheres in these representations, and a wealth of research has sprung up on probing for it.
In this paper, we draw a distinction between intrinsic probing, which examines how linguistic information is structured within a representation, and the extrinsic probing popular in prior work, which only argues for the presence of such information by showing that it can be successfully extracted.
arXiv Detail & Related papers (2020-10-06T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.