DPCL-Diff: The Temporal Knowledge Graph Reasoning based on Graph Node Diffusion Model with Dual-Domain Periodic Contrastive Learning
- URL: http://arxiv.org/abs/2411.01477v1
- Date: Sun, 03 Nov 2024 08:30:29 GMT
- Title: DPCL-Diff: The Temporal Knowledge Graph Reasoning based on Graph Node Diffusion Model with Dual-Domain Periodic Contrastive Learning
- Authors: Yukun Cao, Lisheng Wang, Luobing Huang,
- Abstract summary: We propose a graph node diffusion model with dual-domain periodic contrastive learning (DPCL-Diff)
GNDiff introduces noise into sparsely related events to simulate new events, generating high-quality data that better conforms to the actual distribution.
DPCL-Diff maps periodic and non-periodic event entities to Poincar'e and Euclidean spaces, leveraging their characteristics to distinguish similar periodic events effectively.
- Score: 3.645855411897217
- License:
- Abstract: Temporal knowledge graph (TKG) reasoning that infers future missing facts is an essential and challenging task. Predicting future events typically relies on closely related historical facts, yielding more accurate results for repetitive or periodic events. However, for future events with sparse historical interactions, the effectiveness of this method, which focuses on leveraging high-frequency historical information, diminishes. Recently, the capabilities of diffusion models in image generation have opened new opportunities for TKG reasoning. Therefore, we propose a graph node diffusion model with dual-domain periodic contrastive learning (DPCL-Diff). Graph node diffusion model (GNDiff) introduces noise into sparsely related events to simulate new events, generating high-quality data that better conforms to the actual distribution. This generative mechanism significantly enhances the model's ability to reason about new events. Additionally, the dual-domain periodic contrastive learning (DPCL) maps periodic and non-periodic event entities to Poincar\'e and Euclidean spaces, leveraging their characteristics to distinguish similar periodic events effectively. Experimental results on four public datasets demonstrate that DPCL-Diff significantly outperforms state-of-the-art TKG models in event prediction, demonstrating our approach's effectiveness. This study also investigates the combined effectiveness of GNDiff and DPCL in TKG tasks.
Related papers
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
We propose a new event forecasting model based on a novel training framework of historical contrastive learning.
CENET learns both the historical and non-historical dependency to distinguish the most potential entities.
We evaluate our proposed model on five benchmark graphs.
arXiv Detail & Related papers (2023-08-29T03:26:38Z) - Deep graph kernel point processes [17.74234892097879]
This paper presents a novel point process model for discrete event data over graphs, where the event interaction occurs within a latent graph structure.
The key idea is to represent the influence kernel by Graph Neural Networks (GNN) to capture the underlying graph structure.
Compared with prior works focusing on directly modeling the conditional intensity function using neural networks, our kernel presentation herds the repeated event influence patterns more effectively.
arXiv Detail & Related papers (2023-06-20T06:15:19Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
We propose an effective temporally-conditional diffusion model coined Temporally-Composable diffuser (TCD)
TCD extracts temporal information from interaction sequences and explicitly guides generation with temporal conditions.
Our method reaches or matches the best performance compared with prior SOTA baselines.
arXiv Detail & Related papers (2023-06-08T02:12:26Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Logic and Commonsense-Guided Temporal Knowledge Graph Completion [9.868206060374991]
A temporal knowledge graph (TKG) stores the events derived from the data involving time.
We propose a Logic and Commonsense-Guided Embedding model (LCGE) to jointly learn the time-sensitive representation involving timeliness and causality of events.
arXiv Detail & Related papers (2022-11-30T10:06:55Z) - A Graph Regularized Point Process Model For Event Propagation Sequence [2.9093633827040724]
Point process is the dominant paradigm for modeling event sequences occurring at irregular intervals.
We propose a Graph Regularized Point Process that characterizes the event interactions across nodes with neighbors.
By applying a graph regularization method, GRPP provides model interpretability by uncovering influence strengths between nodes.
arXiv Detail & Related papers (2022-11-21T04:49:59Z) - Temporal Knowledge Graph Reasoning with Historical Contrastive Learning [24.492458924487863]
We propose a new event forecasting model called Contrastive Event Network (CENET)
CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query.
During the inference process, CENET employs a mask-based strategy to generate the final results.
arXiv Detail & Related papers (2022-11-20T08:32:59Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
We propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP)
Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
arXiv Detail & Related papers (2022-05-21T15:30:25Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.