Teaching Models to Improve on Tape
- URL: http://arxiv.org/abs/2411.01483v3
- Date: Wed, 06 Nov 2024 17:04:36 GMT
- Title: Teaching Models to Improve on Tape
- Authors: Liat Bezalel, Eyal Orgad, Amir Globerson,
- Abstract summary: Large Language Models (LLMs) often struggle when prompted to generate content under specific constraints.
Recent works have shown that LLMs can benefit from such "corrective feedback"
We introduce an RL framework for teaching models to use such rewards, by simulating interaction sessions, and rewarding the model according to its ability to satisfy the constraints.
- Score: 30.330699770714165
- License:
- Abstract: Large Language Models (LLMs) often struggle when prompted to generate content under specific constraints. However, in such cases it is often easy to check whether these constraints are satisfied or violated. Recent works have shown that LLMs can benefit from such "corrective feedback". Here we claim that this skill of LLMs can be significantly enhanced via training. We introduce an RL framework for teaching models to use such rewards, by simulating interaction sessions, and rewarding the model according to its ability to satisfy the constraints. We refer to our method as CORGI (Controlled Generation with RL for Guided Interaction), and evaluate it on a variety of controlled generation tasks using unlabeled training data. We find that CORGI consistently outperforms the baseline reinforcement learning method that does not incorporate conversational feedback. Furthermore, CORGI's interactive framework enables meta-learning, allowing the LLM to generalize better to guided interaction in new tasks. Our results clearly show that conversational optimization, when combined with reinforcement learning, significantly improves the effectiveness of LLMs in controlled generation contexts.
Related papers
- Real-Time Personalization for LLM-based Recommendation with Customized In-Context Learning [57.28766250993726]
This work explores adapting to dynamic user interests without any model updates.
Existing Large Language Model (LLM)-based recommenders often lose the in-context learning ability during recommendation tuning.
We propose RecICL, which customizes recommendation-specific in-context learning for real-time recommendations.
arXiv Detail & Related papers (2024-10-30T15:48:36Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
"LLMs-as-Instructors" framework autonomously enhances the training of smaller target models.
Inspired by the theory of "Learning from Errors", this framework employs an instructor LLM to meticulously analyze the specific errors within a target model.
Within this framework, we implement two strategies: "Learning from Error," which focuses solely on incorrect responses to tailor training data, and "Learning from Error by Contrast", which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors.
arXiv Detail & Related papers (2024-06-29T17:16:04Z) - Soft Prompting for Unlearning in Large Language Models [11.504012974208466]
This work focuses on investigating machine unlearning for Large Language Models motivated by data protection regulations.
We propose a framework textbfSoft textbfPrompting for textbfUntextbflearning (SPUL)
We conduct a rigorous evaluation of the proposed method and our results indicate that SPUL can significantly improve the trade-off between utility and forgetting.
arXiv Detail & Related papers (2024-06-17T19:11:40Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
This study targets a critical aspect of multi-modal LLMs' (LLMs&VLMs) inference: explicit controllable text generation.
We introduce a novel inference method, Prompt Highlighter, which enables users to highlight specific prompt spans to interactively control the focus during generation.
We find that, during inference, guiding the models with highlighted tokens through the attention weights leads to more desired outputs.
arXiv Detail & Related papers (2023-12-07T13:53:29Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
We focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks.
We propose Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-08-22T02:25:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.