論文の概要: DAG: Dictionary-Augmented Generation for Disambiguation of Sentences in Endangered Uralic Languages using ChatGPT
- arxiv url: http://arxiv.org/abs/2411.01531v1
- Date: Sun, 03 Nov 2024 11:25:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:00.554819
- Title: DAG: Dictionary-Augmented Generation for Disambiguation of Sentences in Endangered Uralic Languages using ChatGPT
- Title(参考訳): DAG:ChatGPTを用いた絶滅危惧言語における文の曖昧化のための辞書拡張生成
- Authors: Mika Hämäläinen,
- Abstract要約: 2つの絶滅危惧言語における補題を曖昧にするためにChatGPTを使用できることを示す。
我々は、候補の補題の辞書翻訳を多数言語に提供することで、私たちのプロンプトを強化する。
- 参考スコア(独自算出の注目度): 0.59829224684009
- License:
- Abstract: We showcase that ChatGPT can be used to disambiguate lemmas in two endangered languages ChatGPT is not proficient in, namely Erzya and Skolt Sami. We augment our prompt by providing dictionary translations of the candidate lemmas to a majority language - Finnish in our case. This dictionary augmented generation approach results in 50\% accuracy for Skolt Sami and 41\% accuracy for Erzya. On a closer inspection, many of the error types were of the kind even an untrained human annotator would make.
- Abstract(参考訳): 危惧言語であるChatGPTは、ErzyaとSkolt Samiという2つの言語で補題を曖昧にするために使用できることを示す。
我々は、候補者のレムマの辞書翻訳を多数言語(フィンランド語の場合)に提供することで、我々のプロンプトを強化する。
この辞書拡張手法により、Skolt Samiの精度が50%、Erzyaの精度が41%となる。
より綿密な検査では、多くのエラータイプは、訓練されていない人間のアノテーターが作ろうとする種類のものだ。
関連論文リスト
- Grammaticality Representation in ChatGPT as Compared to Linguists and Laypeople [0.0]
本研究は,148の言語現象について,住民の文法的判断を収集した以前の研究に基づいている。
我々の主な焦点は、これらの言語構成の判断において、ChatGPTを一般人と言語学者の両方と比較することであった。
全体として,ChatGPTと言語学者の間には73%から95%の収束率があり,全体としては89%と推定された。
論文 参考訳(メタデータ) (2024-06-17T00:23:16Z) - Homonym Sense Disambiguation in the Georgian Language [49.1574468325115]
本研究は,ジョージア語における単語センス曖昧化(WSD)課題に対する新しいアプローチを提案する。
これは、ジョージアのCommon Crawls corpusをフィルタリングすることによって形成されたデータセットに基づいて、事前訓練されたLarge Language Model(LLM)の教師付き微調整に基づいている。
論文 参考訳(メタデータ) (2024-04-24T21:48:43Z) - Counting the Bugs in ChatGPT's Wugs: A Multilingual Investigation into
the Morphological Capabilities of a Large Language Model [23.60677380868016]
大規模言語モデル (LLM) は近年,人間の言語スキルと比較する上で,目覚ましい言語能力に達している。
そこで本研究では,4言語でChatGPTの形態的能力の厳密な分析を行う。
ChatGPTは、特に英語の目的構築システムでは大幅に性能が低下している。
論文 参考訳(メタデータ) (2023-10-23T17:21:03Z) - Emergence of a phonological bias in ChatGPT [0.0]
私はChatGPTが人間の言語処理の目印となる音韻的バイアスを示すことを実証する。
ChatGPTは母音上の子音を使って単語を識別する傾向がある。
これは、英語やスペイン語のような子音と母音の相対的な分布が異なる言語で観察される。
論文 参考訳(メタデータ) (2023-05-25T10:57:43Z) - GPTAraEval: A Comprehensive Evaluation of ChatGPT on Arabic NLP [21.6253870440136]
本研究は,44の言語理解・生成タスクを含むChatGPTの大規模自動・人為的評価を行う。
以上の結果から,ChatGPTは英語における顕著な性能にもかかわらず,アラビア語を微調整した小型モデルでは一貫して上回っていることが示唆された。
論文 参考訳(メタデータ) (2023-05-24T10:12:39Z) - Phoenix: Democratizing ChatGPT across Languages [68.75163236421352]
我々は大規模な言語モデル「フェニックス」をリリースし、オープンソースの英語モデルと中国語モデルの間で競合する性能を実現した。
この作業は、特にOpenAIやローカルなゴーバーメントの制限により、人々がChatGPTを使えない国では、ChatGPTをよりアクセスしやすいものにする上で有益であると考えています。
論文 参考訳(メタデータ) (2023-04-20T16:50:04Z) - Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine [97.8609714773255]
機械翻訳におけるChatGPTの評価には,翻訳プロンプト,多言語翻訳,翻訳堅牢性などが含まれる。
ChatGPTは商用翻訳製品と競合するが、低リソースや遠方の言語では遅れている。
GPT-4エンジンの打ち上げにより、ChatGPTの翻訳性能は大幅に向上した。
論文 参考訳(メタデータ) (2023-01-20T08:51:36Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
専門家が注釈を付けた言語学的に重要なエンティティ(CLSE)のコーパスをリリースする。
CLSEは74種類のセマンティックタイプをカバーし、航空券売機からビデオゲームまで様々なアプリケーションをサポートする。
言語的に代表されるNLG評価ベンチマークを,フランス語,マラティー語,ロシア語の3言語で作成する。
論文 参考訳(メタデータ) (2022-11-04T12:56:12Z) - Challenge Dataset of Cognates and False Friend Pairs from Indian
Languages [54.6340870873525]
コニャートは異なる言語で同じテキストの複数の変種に存在する。
本稿では,12言語を対象とした2つのコグネートデータセットの作成について述べる。
論文 参考訳(メタデータ) (2021-12-17T14:23:43Z) - Speakers Fill Lexical Semantic Gaps with Context [65.08205006886591]
我々は単語の語彙的あいまいさを意味のエントロピーとして運用する。
単語のあいまいさの推定値と,WordNetにおける単語の同義語数との間には,有意な相関関係が認められた。
これは、あいまいさの存在下では、話者が文脈をより情報的にすることで補うことを示唆している。
論文 参考訳(メタデータ) (2020-10-05T17:19:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。