Customized Subgraph Selection and Encoding for Drug-drug Interaction Prediction
- URL: http://arxiv.org/abs/2411.01535v1
- Date: Sun, 03 Nov 2024 11:41:35 GMT
- Title: Customized Subgraph Selection and Encoding for Drug-drug Interaction Prediction
- Authors: Haotong Du, Quanming Yao, Juzheng Zhang, Yang Liu, Zhen Wang,
- Abstract summary: Subgraph-based methods have proven to be effective and interpretable in predicting drug-drug interactions (DDIs)
Subgraph selection and encoding are critical stages in these methods, yet customizing these components remains underexplored due to the high cost of manual adjustments.
We propose a method to search for data-specific components within subgraph-based frameworks.
- Score: 29.586563423439355
- License:
- Abstract: Subgraph-based methods have proven to be effective and interpretable in predicting drug-drug interactions (DDIs), which are essential for medical practice and drug development. Subgraph selection and encoding are critical stages in these methods, yet customizing these components remains underexplored due to the high cost of manual adjustments. In this study, inspired by the success of neural architecture search (NAS), we propose a method to search for data-specific components within subgraph-based frameworks. Specifically, we introduce extensive subgraph selection and encoding spaces that account for the diverse contexts of drug interactions in DDI prediction. To address the challenge of large search spaces and high sampling costs, we design a relaxation mechanism that uses an approximation strategy to efficiently explore optimal subgraph configurations. This approach allows for robust exploration of the search space. Extensive experiments demonstrate the effectiveness and superiority of the proposed method, with the discovered subgraphs and encoding functions highlighting the model's adaptability.
Related papers
- PharmacoMatch: Efficient 3D Pharmacophore Screening through Neural Subgraph Matching [0.5113447003407372]
We introduce PharmacoMatch, a novel contrastive learning approach based on neural subgraph matching.
Our findings demonstrate significantly shorter runtimes for pharmacophore matching, offering a promising speed-up for screening very large datasets.
arXiv Detail & Related papers (2024-09-10T08:17:06Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
Our approach incorporates innovative techniques including progressive semi-supervised learning, adaptative training strategy, and boundary enhancement.
Experimental results on 3DRA datasets demonstrate the superiority of our method in terms of mesh-based segmentation metrics.
arXiv Detail & Related papers (2023-08-07T14:16:52Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - A Multi-criteria Approach to Evolve Sparse Neural Architectures for
Stock Market Forecasting [0.0]
This study proposes a new framework to evolve efficacious yet parsimonious neural architectures for the movement prediction of stock market indices.
A new search paradigm, Two-Dimensional Swarms (2DS) is proposed for the multi-criteria neural architecture search.
The results of this study convincingly demonstrate that the proposed approach can evolve parsimonious networks with better generalization capabilities.
arXiv Detail & Related papers (2021-11-15T19:44:10Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z) - Exemplar Auditing for Multi-Label Biomedical Text Classification [0.4873362301533824]
We generalize a recently proposed zero-shot sequence labeling method, "supervised labeling via a convolutional decomposition"
The approach yields classification with "introspection", relating the fine-grained features of an inference-time prediction to their nearest neighbors.
Our proposed approach yields both a competitively effective classification model and an interrogation mechanism to aid healthcare workers in understanding the salient features that drive the model's predictions.
arXiv Detail & Related papers (2020-04-07T02:54:20Z) - DeepGS: Deep Representation Learning of Graphs and Sequences for
Drug-Target Binding Affinity Prediction [8.292330541203647]
We propose a novel end-to-end learning framework, called DeepGS, which uses deep neural networks to extract the local chemical context from amino acids and SMILES sequences.
We have conducted extensive experiments to compare our proposed method with state-of-the-art models including KronRLS, Sim, DeepDTA and DeepCPI.
arXiv Detail & Related papers (2020-03-31T01:35:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.