論文の概要: Building the Self-Improvement Loop: Error Detection and Correction in Goal-Oriented Semantic Communications
- arxiv url: http://arxiv.org/abs/2411.01544v1
- Date: Sun, 03 Nov 2024 12:29:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:27:34.449218
- Title: Building the Self-Improvement Loop: Error Detection and Correction in Goal-Oriented Semantic Communications
- Title(参考訳): 自己改善ループの構築:ゴール指向セマンティック通信における誤り検出と訂正
- Authors: Peizheng Li, Xinyi Lin, Adnan Aijaz,
- Abstract要約: 意味コミュニケーション(SemCom)はシンボルよりも意味の伝達に重点を置いており、コミュニケーション効率が大幅に向上している。
これらの利点にもかかわらず、送信された意味と受信された意味の相違から生じるセマンティックエラーは、システムの信頼性に対する大きな課題である。
本稿では,SemComシステムにおけるセマンティックエラーの検出と修正のための包括的フレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.677520298504178
- License:
- Abstract: Error detection and correction are essential for ensuring robust and reliable operation in modern communication systems, particularly in complex transmission environments. However, discussions on these topics have largely been overlooked in semantic communication (SemCom), which focuses on transmitting meaning rather than symbols, leading to significant improvements in communication efficiency. Despite these advantages, semantic errors -- stemming from discrepancies between transmitted and received meanings -- present a major challenge to system reliability. This paper addresses this gap by proposing a comprehensive framework for detecting and correcting semantic errors in SemCom systems. We formally define semantic error, detection, and correction mechanisms, and identify key sources of semantic errors. To address these challenges, we develop a Gaussian process (GP)-based method for latent space monitoring to detect errors, alongside a human-in-the-loop reinforcement learning (HITL-RL) approach to optimize semantic model configurations using user feedback. Experimental results validate the effectiveness of the proposed methods in mitigating semantic errors under various conditions, including adversarial attacks, input feature changes, physical channel variations, and user preference shifts. This work lays the foundation for more reliable and adaptive SemCom systems with robust semantic error management techniques.
- Abstract(参考訳): エラー検出と修正は、現代の通信システム、特に複雑な通信環境において、堅牢で信頼性の高い運用を保証するために不可欠である。
しかし、これらの話題に関する議論は、記号よりも意味を伝達することに焦点を当てた意味コミュニケーション(SemCom)において、主に見過ごされ、コミュニケーション効率が大幅に向上した。
これらの利点にもかかわらず、送信された意味と受信された意味の相違から生じるセマンティックエラーは、システムの信頼性に対する大きな課題である。
本稿では,SemComシステムにおけるセマンティックエラーの検出と修正のための包括的なフレームワークを提案する。
我々は、意味的誤り、検出、訂正のメカニズムを正式に定義し、意味的誤りの重要な原因を特定する。
これらの課題に対処するために,ユーザフィードバックを用いたセマンティックモデル構成の最適化を目的としたHuman-in-the-loop reinforcement Learning (HITL-RL)アプローチとともに,遅延空間監視による誤り検出のためのガウス過程(GP)に基づく手法を開発した。
提案手法の有効性を実験的に検証し, 敵攻撃, 入力特徴変化, 物理チャネル変動, ユーザの嗜好変化など, 種々の条件下での意味的誤りを緩和する手法の有効性を検証した。
この研究は、堅牢なセマンティックエラー管理技術を備えたより信頼性が高く適応的なSemComシステムの基礎を築いた。
関連論文リスト
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Tackling Distribution Shifts in Task-Oriented Communication with Information Bottleneck [28.661084093544684]
本稿では,情報ボトルネック(IB)原理と不変リスク最小化(IRM)フレームワークに基づく新しいアプローチを提案する。
提案手法は,効率的な領域シフト一般化のための高機能を有するコンパクトかつ情報的特徴を抽出することを目的としている。
提案手法は最先端の手法より優れ、より優れたレート歪みトレードオフを実現することを示す。
論文 参考訳(メタデータ) (2024-05-15T17:07:55Z) - Pragmatic Goal-Oriented Communications under Semantic-Effectiveness Channel Errors [3.266331042379877]
近日中のAI支援6Gネットワークでは、セマンティック、プラグマティック、ゴール指向のコミュニケーション戦略の統合が必須となる。
本稿では,意味的および有効性の両レベルでの言語ミスマッチから生じる誤りを数学的にモデル化する手法を提案する。
本稿では,言語ミスマッチを補うメカニズムが提案される可能性を示し,ノイズの多い通信環境下での信頼性通信の実現可能性を高める。
論文 参考訳(メタデータ) (2024-01-19T16:43:47Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
本稿では,多モデルプロンプトを用いたGAI支援型SemComシステムを提案する。
セキュリティ上の懸念に応えて、フレンドリーなジャマーによって支援される隠蔽通信の応用を紹介する。
論文 参考訳(メタデータ) (2023-09-05T23:24:56Z) - Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware
Communication Framework [124.6509194665514]
ソースユーザと宛先ユーザの間で暗黙的な意味を表現し,伝達し,解釈するために,新しい暗黙的意味コミュニケーション(iSAC)アーキテクチャを提案する。
プロジェクションベースセマンティックエンコーダは, 明示的セマンティックスの高次元グラフィカル表現を低次元セマンティックコンステレーション空間に変換し, 効率的な物理チャネル伝送を実現する。
ソースユーザの暗黙的意味推論過程を学習し、模倣できるようにするため、G-RMLと呼ばれる生成逆模倣学習ベースのソリューションが提案されている。
論文 参考訳(メタデータ) (2023-06-20T01:32:27Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
単一ユーザと複数ユーザのコミュニケーションシナリオに対して,認知意味コミュニケーションフレームワークが2つ提案されている。
知識グラフから推論規則をマイニングすることにより,効果的な意味補正アルゴリズムを提案する。
マルチユーザ認知型セマンティックコミュニケーションシステムにおいて,異なるユーザのメッセージを識別するために,メッセージ復元アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-15T12:01:43Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph [33.29303908864777]
知識グラフを利用した認知意味コミュニケーションフレームワークを提案する。
意味情報検出のためのシンプルで汎用的で解釈可能なソリューションを開発した。
提案システムは,データ圧縮率や通信の信頼性の観点から,他のベンチマークシステムよりも優れている。
論文 参考訳(メタデータ) (2022-02-24T08:26:18Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Reinforcement Learning-powered Semantic Communication via Semantic
Similarity [13.569045590522316]
我々は,ビットレベルの精度を厳格に確保する代わりに,セマンティック情報を保存するための新しいセマンティックコミュニケーション機構を導入する。
一般的に使用されるビットレベルのメトリクスは、重要な意味や構造を捉えるのに脆弱であることを示す。
ユーザ定義のセマンティック測定を同時に最適化できる強化学習(RL)ベースのソリューションを提案しました。
論文 参考訳(メタデータ) (2021-08-27T05:21:05Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
本稿では、V2VNetで提案された設定について検討し、近くにある自動運転車が共同で物体検出と動き予測を協調的に行う方法を提案する。
本稿では,コミュニケーションを学習し,潜在的な誤りを推定し,それらの誤りについてコンセンサスを得るための新しいニューラルネットワーク推論フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-10T18:19:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。