Decoupling Dark Knowledge via Block-wise Logit Distillation for Feature-level Alignment
- URL: http://arxiv.org/abs/2411.01547v1
- Date: Sun, 03 Nov 2024 12:42:16 GMT
- Title: Decoupling Dark Knowledge via Block-wise Logit Distillation for Feature-level Alignment
- Authors: Chengting Yu, Fengzhao Zhang, Ruizhe Chen, Zuozhu Liu, Shurun Tan, Er-Ping Li, Aili Wang,
- Abstract summary: Knowledge Distillation (KD) transfers dark knowledge from the teacher to the student via logits or intermediate features.
Recent work has uncovered the potential of the logit-based method, bringing the simple KD form based on logits back into the limelight.
- Score: 6.223632538498386
- License:
- Abstract: Knowledge Distillation (KD), a learning manner with a larger teacher network guiding a smaller student network, transfers dark knowledge from the teacher to the student via logits or intermediate features, with the aim of producing a well-performed lightweight model. Notably, many subsequent feature-based KD methods outperformed the earliest logit-based KD method and iteratively generated numerous state-of-the-art distillation methods. Nevertheless, recent work has uncovered the potential of the logit-based method, bringing the simple KD form based on logits back into the limelight. Features or logits? They partially implement the KD with entirely distinct perspectives; therefore, choosing between logits and features is not straightforward. This paper provides a unified perspective of feature alignment in order to obtain a better comprehension of their fundamental distinction. Inheriting the design philosophy and insights of feature-based and logit-based methods, we introduce a block-wise logit distillation framework to apply implicit logit-based feature alignment by gradually replacing teacher's blocks as intermediate stepping-stone models to bridge the gap between the student and the teacher. Our method obtains comparable or superior results to state-of-the-art distillation methods. This paper demonstrates the great potential of combining logit and features, and we hope it will inspire future research to revisit KD from a higher vantage point.
Related papers
- Linear Projections of Teacher Embeddings for Few-Class Distillation [14.99228980898161]
Knowledge Distillation (KD) has emerged as a promising approach for transferring knowledge from a larger, more complex teacher model to a smaller student model.
We introduce a novel method for distilling knowledge from the teacher's model representations, which we term Learning Embedding Linear Projections (LELP)
Our experimental evaluation on large-scale NLP benchmarks like Amazon Reviews and Sentiment140 demonstrate the LELP is consistently competitive with, and typically superior to, existing state-of-the-art distillation algorithms for binary and few-class problems.
arXiv Detail & Related papers (2024-09-30T16:07:34Z) - LumiNet: The Bright Side of Perceptual Knowledge Distillation [18.126581058419713]
We present LumiNet, a novel knowledge distillation algorithm designed to enhance logit-based distillation.
LumiNet addresses overconfidence issues in logit-based distillation method while also introducing a novel method to distill knowledge from the teacher.
It excels on benchmarks like CIFAR-100, ImageNet, and MSCOCO, outperforming leading feature-based methods.
arXiv Detail & Related papers (2023-10-05T16:43:28Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - Class-aware Information for Logit-based Knowledge Distillation [16.634819319915923]
We propose a Class-aware Logit Knowledge Distillation (CLKD) method, that extents the logit distillation in both instance-level and class-level.
CLKD enables the student model mimic higher semantic information from the teacher model, hence improving the distillation performance.
arXiv Detail & Related papers (2022-11-27T09:27:50Z) - Unbiased Knowledge Distillation for Recommendation [66.82575287129728]
Knowledge distillation (KD) has been applied in recommender systems (RS) to reduce inference latency.
Traditional solutions first train a full teacher model from the training data, and then transfer its knowledge to supervise the learning of a compact student model.
We find such a standard distillation paradigm would incur serious bias issue -- popular items are more heavily recommended after the distillation.
arXiv Detail & Related papers (2022-11-27T05:14:03Z) - Knowledge Distillation Meets Open-Set Semi-Supervised Learning [69.21139647218456]
We propose a novel em modelname (bfem shortname) method dedicated for distilling representational knowledge semantically from a pretrained teacher to a target student.
At the problem level, this establishes an interesting connection between knowledge distillation with open-set semi-supervised learning (SSL)
Our shortname outperforms significantly previous state-of-the-art knowledge distillation methods on both coarse object classification and fine face recognition tasks.
arXiv Detail & Related papers (2022-05-13T15:15:27Z) - A Closer Look at Knowledge Distillation with Features, Logits, and
Gradients [81.39206923719455]
Knowledge distillation (KD) is a substantial strategy for transferring learned knowledge from one neural network model to another.
This work provides a new perspective to motivate a set of knowledge distillation strategies by approximating the classical KL-divergence criteria with different knowledge sources.
Our analysis indicates that logits are generally a more efficient knowledge source and suggests that having sufficient feature dimensions is crucial for the model design.
arXiv Detail & Related papers (2022-03-18T21:26:55Z) - Semi-Online Knowledge Distillation [2.373824287636486]
Conventional knowledge distillation (KD) is to transfer knowledge from a large and well pre-trained teacher network to a small student network.
Deep mutual learning (DML) has been proposed to help student networks learn collaboratively and simultaneously.
We propose a Semi-Online Knowledge Distillation (SOKD) method that effectively improves the performance of the student and the teacher.
arXiv Detail & Related papers (2021-11-23T09:44:58Z) - KDExplainer: A Task-oriented Attention Model for Explaining Knowledge
Distillation [59.061835562314066]
We introduce a novel task-oriented attention model, termed as KDExplainer, to shed light on the working mechanism underlying the vanilla KD.
We also introduce a portable tool, dubbed as virtual attention module (VAM), that can be seamlessly integrated with various deep neural networks (DNNs) to enhance their performance under KD.
arXiv Detail & Related papers (2021-05-10T08:15:26Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
We propose a novel KD method that works by modeling the information flow through the various layers of the teacher model.
The proposed method is capable of overcoming the aforementioned limitations by using an appropriate supervision scheme during the different phases of the training process.
arXiv Detail & Related papers (2020-05-02T06:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.