Learning to Construct Implicit Communication Channel
- URL: http://arxiv.org/abs/2411.01553v1
- Date: Sun, 03 Nov 2024 12:58:22 GMT
- Title: Learning to Construct Implicit Communication Channel
- Authors: Han Wang, Binbin Chen, Tieying Zhang, Baoxiang Wang,
- Abstract summary: Implicit communication is an essential component in collaborative multi-agent systems.
Previous works on learning implicit communication mostly rely on theory of mind (ToM)
We propose the Implicit Channel Protocol (ICP) framework, which allows agents to construct implicit communication channels similar to the explicit ones.
- Score: 15.362651398484633
- License:
- Abstract: Effective communication is an essential component in collaborative multi-agent systems. Situations where explicit messaging is not feasible have been common in human society throughout history, which motivate the study of implicit communication. Previous works on learning implicit communication mostly rely on theory of mind (ToM), where agents infer the mental states and intentions of others by interpreting their actions. However, ToM-based methods become less effective in making accurate inferences in complex tasks. In this work, we propose the Implicit Channel Protocol (ICP) framework, which allows agents to construct implicit communication channels similar to the explicit ones. ICP leverages a subset of actions, denoted as the scouting actions, and a mapping between information and these scouting actions that encodes and decodes the messages. We propose training algorithms for agents to message and act, including learning with a randomly initialized information map and with a delayed information map. The efficacy of ICP has been tested on the tasks of Guessing Number, Revealing Goals, and Hanabi, where ICP significantly outperforms baseline methods through more efficient information transmission.
Related papers
- Pragmatic Communication in Multi-Agent Collaborative Perception [80.14322755297788]
Collaborative perception results in a trade-off between perception ability and communication costs.
We propose PragComm, a multi-agent collaborative perception system with two key components.
PragComm consistently outperforms previous methods with more than 32.7K times lower communication volume.
arXiv Detail & Related papers (2024-01-23T11:58:08Z) - T2MAC: Targeted and Trusted Multi-Agent Communication through Selective
Engagement and Evidence-Driven Integration [15.91335141803629]
We propose Targeted and Trusted Multi-Agent Communication (T2MAC) to help agents learn selective engagement and evidence-driven integration.
T2MAC enables agents to craft individualized messages, pinpoint ideal communication windows, and engage with reliable partners.
We evaluate our method on a diverse set of cooperative multi-agent tasks, with varying difficulties, involving different scales.
arXiv Detail & Related papers (2024-01-19T18:00:33Z) - Context-aware Communication for Multi-agent Reinforcement Learning [6.109127175562235]
We develop a context-aware communication scheme for multi-agent reinforcement learning (MARL)
In the first stage, agents exchange coarse representations in a broadcast fashion, providing context for the second stage.
Following this, agents utilize attention mechanisms in the second stage to selectively generate messages personalized for the receivers.
To evaluate the effectiveness of CACOM, we integrate it with both actor-critic and value-based MARL algorithms.
arXiv Detail & Related papers (2023-12-25T03:33:08Z) - Batch Selection and Communication for Active Learning with Edge Labeling [54.64985724916654]
Communication-Constrained Bayesian Active Knowledge Distillation (CC-BAKD)
This work introduces Communication-Constrained Bayesian Active Knowledge Distillation (CC-BAKD)
arXiv Detail & Related papers (2023-11-14T10:23:00Z) - From Explicit Communication to Tacit Cooperation:A Novel Paradigm for
Cooperative MARL [14.935456456463731]
We propose a novel paradigm that facilitates a gradual shift from explicit communication to tacit cooperation.
In the initial training stage, we promote cooperation by sharing relevant information among agents.
We then combine the explicitly communicated information with the reconstructed information to obtain mixed information.
arXiv Detail & Related papers (2023-04-28T06:56:07Z) - Adversarial Learning for Implicit Semantic-Aware Communications [104.08383219177557]
We develop a novel adversarial learning-based implicit semantic-aware communication architecture (iSAC)
We prove that by applying iSAC, the destination user can always learn an inference rule that matches the true inference rule of the source messages.
Experimental results show that the proposed iSAC can offer up to a 19.69 dB improvement over existing non-inferential communication solutions.
arXiv Detail & Related papers (2023-01-27T08:28:12Z) - Over-communicate no more: Situated RL agents learn concise communication
protocols [78.28898217947467]
It is unclear how to design artificial agents that can learn to effectively and efficiently communicate with each other.
Much research on communication emergence uses reinforcement learning (RL)
We explore situated communication in a multi-step task, where the acting agent has to forgo an environmental action to communicate.
We find that while all tested pressures can disincentivise over-communication, situated communication does it most effectively and, unlike the cost on effort, does not negatively impact emergence.
arXiv Detail & Related papers (2022-11-02T21:08:14Z) - Beyond Transmitting Bits: Context, Semantics, and Task-Oriented
Communications [88.68461721069433]
Next generation systems can be potentially enriched by folding message semantics and goals of communication into their design.
This tutorial summarizes the efforts to date, starting from its early adaptations, semantic-aware and task-oriented communications.
The focus is on approaches that utilize information theory to provide the foundations, as well as the significant role of learning in semantics and task-aware communications.
arXiv Detail & Related papers (2022-07-19T16:00:57Z) - Learning Selective Communication for Multi-Agent Path Finding [18.703918339797283]
Decision Causal Communication (DCC) is a simple yet efficient model to enable agents to select neighbors to conduct communication.
DCC is suitable for decentralized execution to handle large scale problems.
arXiv Detail & Related papers (2021-09-12T03:07:20Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
We propose Individually Inferred Communication (I2C) to enable agents to learn a prior for agent-agent communication.
The prior knowledge is learned via causal inference and realized by a feed-forward neural network.
I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios.
arXiv Detail & Related papers (2020-06-11T14:07:57Z) - Emergence of Pragmatics from Referential Game between Theory of Mind
Agents [64.25696237463397]
We propose an algorithm, using which agents can spontaneously learn the ability to "read between lines" without any explicit hand-designed rules.
We integrate the theory of mind (ToM) in a cooperative multi-agent pedagogical situation and propose an adaptive reinforcement learning (RL) algorithm to develop a communication protocol.
arXiv Detail & Related papers (2020-01-21T19:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.