論文の概要: Federated Learning Clients Clustering with Adaptation to Data Drifts
- arxiv url: http://arxiv.org/abs/2411.01580v1
- Date: Sun, 03 Nov 2024 14:13:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:52.461084
- Title: Federated Learning Clients Clustering with Adaptation to Data Drifts
- Title(参考訳): データドリフトに適応したフェデレーション学習クライアントクラスタリング
- Authors: Minghao Li, Dmitrii Avdiukhin, Rana Shahout, Nikita Ivkin, Vladimir Braverman, Minlan Yu,
- Abstract要約: フェデレートラーニング(FL)は、エッジデバイス間のディープラーニングモデルのトレーニングを可能にする。
本稿では,データドリフトを低オーバーヘッドで迅速に処理するクラスタリングFLフレームワークであるFieldingを紹介する。
評価の結果,Fielding はモデルの最終精度を 1.9%-5.9% 向上し,目標精度 1.16x-2.61x に到達した。
- 参考スコア(独自算出の注目度): 27.974937897248132
- License:
- Abstract: Federated Learning (FL) enables deep learning model training across edge devices and protects user privacy by retaining raw data locally. Data heterogeneity in client distributions slows model convergence and leads to plateauing with reduced precision. Clustered FL solutions address this by grouping clients with statistically similar data and training models for each cluster. However, maintaining consistent client similarity within each group becomes challenging when data drifts occur, significantly impacting model accuracy. In this paper, we introduce Fielding, a clustered FL framework that handles data drifts promptly with low overheads. Fielding detects drifts on all clients and performs selective label distribution-based re-clustering to balance cluster optimality and model performance, remaining robust to malicious clients and varied heterogeneity degrees. Our evaluations show that Fielding improves model final accuracy by 1.9%-5.9% and reaches target accuracies 1.16x-2.61x faster.
- Abstract(参考訳): Federated Learning (FL)は、エッジデバイス間のディープラーニングモデルのトレーニングを可能にし、生データをローカルに保持することで、ユーザのプライバシを保護する。
クライアントディストリビューションにおけるデータの不均一性は、モデルの収束を遅くし、精度を低下させる。
クラスタ化されたFLソリューションは、統計的に類似したデータと各クラスタのトレーニングモデルでクライアントをグループ化することで、この問題に対処する。
しかし、データのドリフトが発生すると、各グループ内で一貫したクライアントの類似性を維持することが困難になり、モデルの精度に大きな影響を及ぼす。
本稿では,データドリフトを低オーバーヘッドで迅速に処理するクラスタリングFLフレームワークであるFieldingを紹介する。
Fieldingは、すべてのクライアント上のドリフトを検出し、クラスタの最適性とモデルパフォーマンスのバランスをとるために、選択的ラベル配信ベースの再クラスタ化を実行する。
評価の結果,Fielding はモデルの最終精度を 1.9%-5.9% 向上し,目標精度 1.16x-2.61x に到達した。
関連論文リスト
- FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
フェデレートラーニング(Federated Learning, FL)は、分散機械学習のパラダイムである。
FLの主な課題の1つは、クライアントデバイスにまたがる不均一なデータ分散の存在である。
我々は,局所モデル重みとクライアントのデータ分布の相関を利用したCFLの新しい手法であるFedClustを提案する。
論文 参考訳(メタデータ) (2024-07-09T02:47:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Decoupled Federated Learning on Long-Tailed and Non-IID data with
Feature Statistics [20.781607752797445]
特徴統計量(DFL-FS)を用いた2段階分離型フェデレーション学習フレームワークを提案する。
最初の段階では、サーバは、マスキングされたローカル特徴統計クラスタリングによってクライアントのクラスカバレッジ分布を推定する。
第2段階では、DFL-FSは、グローバルな特徴統計に基づくフェデレーションされた特徴再生を使用して、長い尾を持つデータ分布へのモデルの適応性を高める。
論文 参考訳(メタデータ) (2024-03-13T09:24:59Z) - Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning [16.684749528240587]
Federated Learning(FL)は、世界中に散在するクライアントが機密データを漏らさずにグローバルモデルを共同で学習することを可能にする、分散トレーニングパラダイムである。
FLは、クライアント間での不均一なデータ分散という形で大きな課題に直面しており、パフォーマンスとロバスト性は低下している。
本稿では,軽量クライアントモデルの連合訓練を支援し,推論コストを低く抑えつつ,不均一なデータ設定下での性能を向上させる基礎モデル蒸留について紹介する。
論文 参考訳(メタデータ) (2023-11-14T19:10:56Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning(FL)は、クライアントがローカルトレーニングデータを共有せずに、局所的にトレーニングされたモデルを集約することで、グローバルモデルの共同トレーニングを可能にする機械学習パラダイムである。
本稿では,適応自己蒸留(ASD)に基づく新たな正規化手法を提案する。
我々の正規化方式は,グローバルモデルエントロピーとクライアントのラベル分布に基づいて,クライアントのトレーニングデータに適応的に適応的に適応する。
論文 参考訳(メタデータ) (2023-05-31T07:00:42Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - When to Trust Aggregated Gradients: Addressing Negative Client Sampling
in Federated Learning [41.51682329500003]
本稿では,各ラウンドにおける集約勾配に対するサーバ学習率を調整するための新しい学習率適応機構を提案する。
我々は、最適なサーバ学習率に肯定的な有意義で堅牢な指標を見つけるために、理論的な推論を行う。
論文 参考訳(メタデータ) (2023-01-25T03:52:45Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。