論文の概要: OSAD: Open-Set Aircraft Detection in SAR Images
- arxiv url: http://arxiv.org/abs/2411.01597v1
- Date: Sun, 03 Nov 2024 15:06:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:43:14.811810
- Title: OSAD: Open-Set Aircraft Detection in SAR Images
- Title(参考訳): OSAD:SAR画像におけるオープンセット航空機検出
- Authors: Xiayang Xiao, Zhuoxuan Li, Haipeng Wang,
- Abstract要約: オープンセット検出は、クローズドセットでトレーニングされた検出器によって、すべての既知のオブジェクトを検出し、オープンセット環境で未知のオブジェクトを識別することを目的としている。
これらの課題に対処するため、SAR画像のための新しいオープンセット航空機検出器、Open-Set Aircraft Detection (OSAD) が提案されている。
グローバルコンテキストモデリング(GCM)、位置品質駆動型擬似ラベル生成(LPG)、プロトタイプコントラスト学習(PCL)の3つの専用コンポーネントを備えている。
- 参考スコア(独自算出の注目度): 1.1060425537315088
- License:
- Abstract: Current mainstream SAR image object detection methods still lack robustness when dealing with unknown objects in open environments. Open-set detection aims to enable detectors trained on a closed set to detect all known objects and identify unknown objects in open-set environments. The key challenges are how to improve the generalization to potential unknown objects and reduce the empirical classification risk of known categories under strong supervision. To address these challenges, a novel open-set aircraft detector for SAR images is proposed, named Open-Set Aircraft Detection (OSAD), which is equipped with three dedicated components: global context modeling (GCM), location quality-driven pseudo labeling generation (LPG), and prototype contrastive learning (PCL). GCM effectively enhances the network's representation of objects by attention maps which is formed through the capture of long sequential positional relationships. LPG leverages clues about object positions and shapes to optimize localization quality, avoiding overfitting to known category information and enhancing generalization to potential unknown objects. PCL employs prototype-based contrastive encoding loss to promote instance-level intra-class compactness and inter-class variance, aiming to minimize the overlap between known and unknown distributions and reduce the empirical classification risk of known categories. Extensive experiments have demonstrated that the proposed method can effectively detect unknown objects and exhibit competitive performance without compromising closed-set performance. The highest absolute gain which ranges from 0 to 18.36% can be achieved on the average precision of unknown objects.
- Abstract(参考訳): 現在主流のSAR画像オブジェクト検出法は、オープン環境で未知のオブジェクトを扱う際には、ロバスト性に欠ける。
オープンセット検出は、クローズドセットでトレーニングされた検出器によって、すべての既知のオブジェクトを検出し、オープンセット環境で未知のオブジェクトを識別することを目的としている。
主要な課題は、潜在的な未知のオブジェクトへの一般化を改善し、強力な監督の下で既知のカテゴリの実証的な分類リスクを減らす方法である。
これらの課題に対処するために、グローバルコンテキストモデリング(GCM)、位置品質駆動型擬似ラベリング生成(LPG)、プロトタイプコントラスト学習(PCL)という3つの専用コンポーネントを備えた、SAR画像用の新しいオープンセット航空機検出器(OSAD)が提案されている。
GCMは、長いシーケンシャルな位置関係のキャプチャによって形成された注意マップによって、オブジェクトのネットワーク表現を効果的に強化する。
LPGは、物体の位置や形状に関する手がかりを活用して、局在化の品質を最適化し、既知のカテゴリ情報への過度な適合を回避し、潜在的な未知のオブジェクトへの一般化を促進する。
PCLは、インスタンスレベルのクラス内コンパクト性とクラス間分散を促進するために、プロトタイプベースのコントラスト符号化損失を採用し、既知の分布と未知分布の重複を最小限に抑え、既知のカテゴリの実証的な分類リスクを低減することを目的としている。
大規模実験により,提案手法は未知の物体を効果的に検出し,クローズドセット性能を損なうことなく競争性能を発揮できることが実証された。
0から18.36%の範囲の絶対ゲインは、未知の物体の平均精度で達成できる。
関連論文リスト
- Reciprocal Point Learning Network with Large Electromagnetic Kernel for SAR Open-Set Recognition [6.226365654670747]
Open Set Recognition (OSR)は、未知のクラスを「未知」と表現しながら、既知のクラスを分類することを目的とする。
オープンセットSAR分類を強化するために,相互学習ネットワークを用いた散乱カーネルと呼ばれる手法を提案する。
大規模属性散乱中心モデルに基づく畳み込みカーネルの設計を提案する。
論文 参考訳(メタデータ) (2024-11-07T13:26:20Z) - Unsupervised Recognition of Unknown Objects for Open-World Object
Detection [28.787586991713535]
Open-World Object Detection (OWOD) はオブジェクト検出問題を現実的でダイナミックなシナリオに拡張する。
現在のOWODモデル(OREやOW-DETRなど)は、高い客観性スコアを持つ擬似ラベル領域に注目する。
本稿では,未知の物体を認識するために,教師なしの識別モデルを学ぶ新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-31T08:17:29Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Open-World Object Detection via Discriminative Class Prototype Learning [4.055884768256164]
オープンワールドオブジェクト検出(OWOD)は、オブジェクト検出とインクリメンタルラーニングとオープンセットラーニングを組み合わせた難しい問題である。
OCPL: 差別的OCPL: オープンワールドオブジェクト検出: 差別的OCPL: 差別的OCPL: オープンワールドオブジェクト検出: 差別的OCPL: 差別的OCPL: オープンワールドオブジェクト検出: 差別的OCPL: 差別的OCPL: オープンワールドオブジェクト検出: 差別的OCPL: 差別的OCPL: オープンワールドオブジェクト検出: オープンワールドオブジェクト検出
論文 参考訳(メタデータ) (2023-02-23T03:05:04Z) - CAT: LoCalization and IdentificAtion Cascade Detection Transformer for
Open-World Object Detection [17.766859354014663]
オープンワールドオブジェクト検出には、既知のオブジェクトと未知のオブジェクトの両方を検出するために、既知のオブジェクトのデータからトレーニングされたモデルが必要である。
CAT: LoCalization and IdentificAtion Cascade Detection Transformerを提案する。
我々のモデルはOWOD, インクリメンタルオブジェクト検出(IOD), オープンセット検出といったタスクにおけるすべての指標において, 最先端技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-05T09:11:16Z) - Open World DETR: Transformer based Open World Object Detection [60.64535309016623]
そこで我々は,Deformable DETRに基づくオープンワールドオブジェクト検出のための2段階学習手法Open World DETRを提案する。
モデルのクラス固有のコンポーネントを多視点の自己ラベル戦略と一貫性制約で微調整する。
提案手法は、他の最先端のオープンワールドオブジェクト検出方法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2022-12-06T13:39:30Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
本稿では,対象物の潜在的可算有界箱の多様性として,ラベルの不確実性問題を定式化する。
本稿では,条件付き変分オートエンコーダを応用した生成フレームワークであるGLENetを提案する。
GLENetが生成するラベルの不確実性はプラグアンドプレイモジュールであり、既存のディープ3D検出器に便利に統合することができる。
論文 参考訳(メタデータ) (2022-07-06T06:26:17Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
オープンワールドオブジェクト検出のための新しいエンドツーエンドトランスフォーマーベースのフレームワークOW-DETRを提案する。
OW-DETRは3つの専用コンポーネント、すなわち注目駆動の擬似ラベル、新規性分類、オブジェクトネススコアから構成される。
我々のモデルは、最近導入されたOWODアプローチであるOREよりも優れており、リコールの度合いは1.8%から3.3%である。
論文 参考訳(メタデータ) (2021-12-02T18:58:30Z) - Learning Open Set Network with Discriminative Reciprocal Points [70.28322390023546]
オープンセット認識は、事前に定義されたクラスからサンプルを同時に分類し、残りを「未知」として識別することを目的としている。
本稿では,各既知圏に対応するクラス外空間のポテンシャル表現であるReciprocal Pointを提案する。
相互点によって構成される有界空間に基づいて、未知のリスクは多圏相互作用によって減少する。
論文 参考訳(メタデータ) (2020-10-31T03:20:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。