Lorentz-Equivariant Quantum Graph Neural Network for High-Energy Physics
- URL: http://arxiv.org/abs/2411.01641v2
- Date: Sat, 04 Jan 2025 09:41:31 GMT
- Title: Lorentz-Equivariant Quantum Graph Neural Network for High-Energy Physics
- Authors: Md Abrar Jahin, Md. Akmol Masud, Md Wahiduzzaman Suva, M. F. Mridha, Nilanjan Dey,
- Abstract summary: Current quantum graph neural networks (GNNs) lack robustness to noise and are often constrained by fixed symmetry groups.
This paper shows that replacing the Lorentz Group Equivariant Block modules in LorentzNet with a dressed quantum circuit significantly enhances performance.
Our results highlight Lorentz-EQGNN's potential for immediate applications in noise-resilient jet tagging, event classification, and broader data-scarce HEP tasks.
- Score: 1.927711700724334
- License:
- Abstract: The rapid data surge from the high-luminosity Large Hadron Collider introduces critical computational challenges requiring novel approaches for efficient data processing in particle physics. Quantum machine learning, with its capability to leverage the extensive Hilbert space of quantum hardware, offers a promising solution. However, current quantum graph neural networks (GNNs) lack robustness to noise and are often constrained by fixed symmetry groups, limiting adaptability in complex particle interaction modeling. This paper demonstrates that replacing the Lorentz Group Equivariant Block modules in LorentzNet with a dressed quantum circuit significantly enhances performance despite using nearly 5.5 times fewer parameters. Additionally, quantum circuits effectively replace MLPs by inherently preserving symmetries, with Lorentz symmetry integration ensuring robust handling of relativistic invariance. Our Lorentz-Equivariant Quantum Graph Neural Network (Lorentz-EQGNN) achieved 74.00% test accuracy and an AUC of 87.38% on the Quark-Gluon jet tagging dataset, outperforming the classical and quantum GNNs with a reduced architecture using only 4 qubits. On the Electron-Photon dataset, Lorentz-EQGNN reached 67.00% test accuracy and an AUC of 68.20%, demonstrating competitive results with just 800 training samples. Evaluation of our model on generic MNIST and FashionMNIST datasets confirmed Lorentz-EQGNN's efficiency, achieving 88.10% and 74.80% test accuracy, respectively. Ablation studies validated the impact of quantum components on performance, with notable improvements in background rejection rates over classical counterparts. These results highlight Lorentz-EQGNN's potential for immediate applications in noise-resilient jet tagging, event classification, and broader data-scarce HEP tasks.
Related papers
- Noise-resistant adaptive Hamiltonian learning [30.632260870411177]
An adaptive Hamiltonian learning (AHL) model for data analysis and quantum state simulation is proposed to overcome problems such as low efficiency.
A noise-resistant quantum neural network (RQNN) based on AHL is developed, which improves the noise robustness of the quantum neural network.
arXiv Detail & Related papers (2025-01-14T11:12:59Z) - Lie-Equivariant Quantum Graph Neural Networks [4.051777802443125]
binary classification tasks are ubiquitous in analyses of the vast amounts of LHC data.
We develop a Lie-Equivariant Quantum Graph Neural Network (Lie-EQGNN), a quantum model that is not only data efficient, but also has symmetry-preserving properties.
arXiv Detail & Related papers (2024-11-22T19:15:13Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Federated Quantum-Train with Batched Parameter Generation [3.697453416360906]
We introduce the Federated Quantum-Train (QT) framework, which integrates the QT model into federated learning.
Our approach significantly reduces qubit usage from 19 to as low as 8 qubits while reducing generalization error.
arXiv Detail & Related papers (2024-09-04T14:39:11Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
hybrid quantum-classical neural networks (HQNNs) represent a promising solution that combines the strengths of classical machine learning with quantum computing capabilities.
In this paper, we investigate the impact of these variations on different HQNN models for image classification tasks, implemented on the PennyLane framework.
We aim to uncover intuitive and counter-intuitive learning patterns of HQNN models within granular levels of controlled quantum perturbations, to form a sound basis for their correlation to accuracy and training time.
arXiv Detail & Related papers (2024-02-16T11:44:25Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.