論文の概要: Diagnosing Medical Datasets with Training Dynamics
- arxiv url: http://arxiv.org/abs/2411.01653v1
- Date: Sun, 03 Nov 2024 18:37:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:22.752754
- Title: Diagnosing Medical Datasets with Training Dynamics
- Title(参考訳): トレーニングダイナミクスを用いた医療データセットの診断
- Authors: Laura Wenderoth,
- Abstract要約: 本研究は,人間のアノテーションの代替としてトレーニング力学を用いる可能性について検討する。
このフレームワークは、データポイントを、簡単に学習できる、学習しにくい、あいまいなカテゴリに分類する。
データマップフレームワークの医療領域への実現可能性と移行性を評価するため,包括的評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study explores the potential of using training dynamics as an automated alternative to human annotation for evaluating the quality of training data. The framework used is Data Maps, which classifies data points into categories such as easy-to-learn, hard-to-learn, and ambiguous (Swayamdipta et al., 2020). Swayamdipta et al. (2020) highlight that difficult-to-learn examples often contain errors, and ambiguous cases significantly impact model training. To confirm the reliability of these findings, we replicated the experiments using a challenging dataset, with a focus on medical question answering. In addition to text comprehension, this field requires the acquisition of detailed medical knowledge, which further complicates the task. A comprehensive evaluation was conducted to assess the feasibility and transferability of the Data Maps framework to the medical domain. The evaluation indicates that the framework is unsuitable for addressing datasets' unique challenges in answering medical questions.
- Abstract(参考訳): 本研究では、トレーニングデータの質を評価するために、人間のアノテーションの代わりにトレーニングダイナミクスを自動で使用する可能性について検討する。
このフレームワークはデータポイントを、簡単に学習できる、学習しにくい、曖昧なカテゴリに分類する(Swayamdipta et al , 2020)。
Swayamdipta et al (2020) は、難解な例にはしばしば誤りがあり、曖昧なケースはモデルのトレーニングに大きな影響を及ぼすと強調した。
これらの結果の信頼性を確認するため,医学的質問応答に着目し,挑戦的なデータセットを用いて実験を再現した。
テキスト理解に加えて、この領域では詳細な医療知識の取得が必要であり、さらに作業が複雑になる。
データマップフレームワークの医療領域への実現可能性と移行性を評価するため,包括的評価を行った。
この評価は、このフレームワークが医学的疑問に答える際のデータセットの固有の課題に対処するには適していないことを示している。
関連論文リスト
- TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis [0.6990493129893111]
本稿では,低背痛リハビリテーションを施行した臨床患者の医療データセットについて,4つの課題に対処し,提案する。
データセットには、3D Kinectスケルトンの位置と向き、RGBビデオ、2Dスケルトンデータ、正確性を評価するための医用アノテーション、身体部分とタイムパンのエラー分類とローカライゼーションが含まれている。
論文 参考訳(メタデータ) (2024-06-29T19:50:06Z) - Validity problems in clinical machine learning by indirect data labeling
using consensus definitions [18.18186817228833]
医学における疾患診断の重要領域における機械学習の有効性を実証する。
トレーニングデータのターゲットラベルが間接測定によって決定されたときに発生するものであり、この間接測定を決定するために必要な基本的な測定が入力データ表現に含まれる。
論文 参考訳(メタデータ) (2023-11-06T11:14:48Z) - Medical Question Summarization with Entity-driven Contrastive Learning [12.008269098530386]
本稿では,エンティティ駆動型コントラスト学習(ECL)を用いた新しい医療質問要約フレームワークを提案する。
ECLは、しばしば質問される質問(FAQ)に医療機関を採用し、硬い負のサンプルを生成する効果的なメカニズムを考案している。
iCliniqデータセットの33%の重複率など、いくつかのMQAデータセットが深刻なデータ漏洩問題に悩まされていることが分かりました。
論文 参考訳(メタデータ) (2023-04-15T00:19:03Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - A Real Use Case of Semi-Supervised Learning for Mammogram Classification
in a Local Clinic of Costa Rica [0.5541644538483946]
ディープラーニングモデルのトレーニングには、かなりの量のラベル付きイメージが必要です。
多くの公開データセットが、さまざまな病院や診療所のデータで構築されている。
ラベルなしデータを利用した半教師付き深層学習手法であるMixMatchを提案し評価した。
論文 参考訳(メタデータ) (2021-07-24T22:26:50Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - An Extensive Study on Cross-Dataset Bias and Evaluation Metrics
Interpretation for Machine Learning applied to Gastrointestinal Tract
Abnormality Classification [2.985964157078619]
GI領域における疾患の自動解析は、コンピュータ科学や医学関連雑誌でホットな話題となっている。
クロスデータセットによる評価指標と機械学習モデルの明確な理解は、この分野の研究を新たな品質レベルに導くために不可欠である。
16種類のGIトラクタ条件を分類できる5つの異なる機械学習モデルの包括的評価を行う。
論文 参考訳(メタデータ) (2020-05-08T08:59:31Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。