Conformal Risk Minimization with Variance Reduction
- URL: http://arxiv.org/abs/2411.01696v1
- Date: Sun, 03 Nov 2024 21:48:15 GMT
- Title: Conformal Risk Minimization with Variance Reduction
- Authors: Sima Noorani, Orlando Romero, Nicolo Dal Fabbro, Hamed Hassani, George J. Pappas,
- Abstract summary: Conformal prediction (CP) is a distribution-free framework for achieving probabilistic guarantees on black-box models.
Recent research efforts have focused on optimizing CP efficiency during training.
We formalize this concept as the problem of conformal risk minimization.
- Score: 37.74931189657469
- License:
- Abstract: Conformal prediction (CP) is a distribution-free framework for achieving probabilistic guarantees on black-box models. CP is generally applied to a model post-training. Recent research efforts, on the other hand, have focused on optimizing CP efficiency during training. We formalize this concept as the problem of conformal risk minimization (CRM). In this direction, conformal training (ConfTr) by Stutz et al.(2022) is a technique that seeks to minimize the expected prediction set size of a model by simulating CP in-between training updates. Despite its potential, we identify a strong source of sample inefficiency in ConfTr that leads to overly noisy estimated gradients, introducing training instability and limiting practical use. To address this challenge, we propose variance-reduced conformal training (VR-ConfTr), a CRM method that incorporates a variance reduction technique in the gradient estimation of the ConfTr objective function. Through extensive experiments on various benchmark datasets, we demonstrate that VR-ConfTr consistently achieves faster convergence and smaller prediction sets compared to baselines.
Related papers
- On Divergence Measures for Training GFlowNets [3.7277730514654555]
Generative Flow Networks (GFlowNets) are amortized inference models designed to sample from unnormalized distributions over composable objects.
Traditionally, the training procedure for GFlowNets seeks to minimize the expected log-squared difference between a proposal (forward policy) and a target (backward policy) distribution.
We review four divergence measures, namely, Renyi-$alpha$'s, Tsallis-$alpha$'s, reverse and forward KL's, and design statistically efficient estimators for their gradients in the context of training GFlowNets
arXiv Detail & Related papers (2024-10-12T03:46:52Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - A novel Deep Learning approach for one-step Conformal Prediction
approximation [0.7646713951724009]
Conformal Prediction (CP) is a versatile solution that guarantees a maximum error rate given minimal constraints.
We propose a novel conformal loss function that approximates the traditionally two-step CP approach in a single step.
arXiv Detail & Related papers (2022-07-25T17:46:09Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Learning Optimal Conformal Classifiers [32.68483191509137]
Conformal prediction (CP) is used to predict confidence sets containing the true class with a user-specified probability.
This paper explores strategies to differentiate through CP during training with the goal of training model with the conformal wrapper end-to-end.
We show that conformal training (ConfTr) outperforms state-of-the-art CP methods for classification by reducing the average confidence set size.
arXiv Detail & Related papers (2021-10-18T11:25:33Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.