Conformal Thresholded Intervals for Efficient Regression
- URL: http://arxiv.org/abs/2407.14495v2
- Date: Thu, 02 Jan 2025 03:36:33 GMT
- Title: Conformal Thresholded Intervals for Efficient Regression
- Authors: Rui Luo, Zhixin Zhou,
- Abstract summary: Conformal Thresholded Intervals (CTI) is a novel conformal regression method that aims to produce the smallest possible prediction set with guaranteed coverage.
CTI constructs prediction sets by thresholding the estimated conditional interquantile intervals based on their length.
CTI achieves superior performance compared to state-of-the-art conformal regression methods across various datasets.
- Score: 9.559062601251464
- License:
- Abstract: This paper introduces Conformal Thresholded Intervals (CTI), a novel conformal regression method that aims to produce the smallest possible prediction set with guaranteed coverage. Unlike existing methods that rely on nested conformal frameworks and full conditional distribution estimation, CTI estimates the conditional probability density for a new response to fall into each interquantile interval using off-the-shelf multi-output quantile regression. By leveraging the inverse relationship between interval length and probability density, CTI constructs prediction sets by thresholding the estimated conditional interquantile intervals based on their length. The optimal threshold is determined using a calibration set to ensure marginal coverage, effectively balancing the trade-off between prediction set size and coverage. CTI's approach is computationally efficient and avoids the complexity of estimating the full conditional distribution. The method is theoretically grounded, with provable guarantees for marginal coverage and achieving the smallest prediction size given by Neyman-Pearson . Extensive experimental results demonstrate that CTI achieves superior performance compared to state-of-the-art conformal regression methods across various datasets, consistently producing smaller prediction sets while maintaining the desired coverage level. The proposed method offers a simple yet effective solution for reliable uncertainty quantification in regression tasks, making it an attractive choice for practitioners seeking accurate and efficient conformal prediction.
Related papers
- Conformal Inference of Individual Treatment Effects Using Conditional Density Estimates [3.7307776333361122]
Current state-of-the-art approaches, while providing valid prediction intervals, often yield overly conservative prediction intervals.
In this work, we introduce a conformal inference approach to ITE using the conditional density of the outcome.
We show that our prediction intervals are not only marginally valid but are narrower than existing methods.
arXiv Detail & Related papers (2025-01-24T21:46:37Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
We study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation.
First, we derive a novel high-dimensional probability convergence guarantee that depends explicitly on the variance and holds under weak conditions.
We further establish refined high-dimensional Berry-Esseen bounds over the class of convex sets that guarantee faster rates than those in the literature.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a method called Stratified Prediction-Powered Inference (StratPPI)
We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - Kernel-based optimally weighted conformal prediction intervals [12.814084012624916]
We present Kernel-based Optimally Weighted Conformal Prediction Intervals (KOWCPI)
KOWCPI adapts the classic Reweighted Nadaraya-Watson (RNW) estimator for quantile regression on dependent data.
We demonstrate the superior performance of KOWCPI on real time-series against state-of-the-art methods.
arXiv Detail & Related papers (2024-05-27T04:49:41Z) - Conformalized Deep Splines for Optimal and Efficient Prediction Sets [4.676979941493237]
We present a new conformal regression method, Spline Prediction Intervals via Conformal Estimation (SPICE)
We prove universal approximation and optimality results for SPICE, which are empirically validated by our experiments.
Results on benchmark datasets demonstrate SPICE-ND models achieve the smallest average prediction set sizes.
arXiv Detail & Related papers (2023-11-01T18:37:07Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
We propose Conformalized Amortized Neural Variational Inference (CANVI)
CANVI constructs conformalized predictors based on each candidate, compares the predictors using a metric known as predictive efficiency, and returns the most efficient predictor.
We prove lower bounds on the predictive efficiency of the regions produced by CANVI and explore how the quality of a posterior approximation relates to the predictive efficiency of prediction regions based on that approximation.
arXiv Detail & Related papers (2023-05-23T17:24:04Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.