A General Recipe for Contractive Graph Neural Networks -- Technical Report
- URL: http://arxiv.org/abs/2411.01717v1
- Date: Mon, 04 Nov 2024 00:05:21 GMT
- Title: A General Recipe for Contractive Graph Neural Networks -- Technical Report
- Authors: Maya Bechler-Speicher, Moshe Eliasof,
- Abstract summary: Graph Neural Networks (GNNs) have gained significant popularity for learning representations of graph-structured data.
GNNs often face challenges related to stability, generalization, and robustness to noise and adversarial attacks.
This paper presents a novel method for inducing contractive behavior in any GNN through SVD regularization.
- Score: 4.14360329494344
- License:
- Abstract: Graph Neural Networks (GNNs) have gained significant popularity for learning representations of graph-structured data due to their expressive power and scalability. However, despite their success in domains such as social network analysis, recommendation systems, and bioinformatics, GNNs often face challenges related to stability, generalization, and robustness to noise and adversarial attacks. Regularization techniques have shown promise in addressing these challenges by controlling model complexity and improving robustness. Building on recent advancements in contractive GNN architectures, this paper presents a novel method for inducing contractive behavior in any GNN through SVD regularization. By deriving a sufficient condition for contractiveness in the update step and applying constraints on network parameters, we demonstrate the impact of SVD regularization on the Lipschitz constant of GNNs. Our findings highlight the role of SVD regularization in enhancing the stability and generalization of GNNs, contributing to the development of more robust graph-based learning algorithms dynamics.
Related papers
- Explainable AI Security: Exploring Robustness of Graph Neural Networks to Adversarial Attacks [14.89001880258583]
Graph neural networks (GNNs) have achieved tremendous success, but recent studies have shown that GNNs are vulnerable to adversarial attacks.
We investigate the adversarial robustness of GNNs by considering graph data patterns, model-specific factors, and the transferability of adversarial examples.
This work illuminates the vulnerabilities of GNNs and opens many promising avenues for designing robust GNNs.
arXiv Detail & Related papers (2024-06-20T01:24:18Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning.
This paper integrates GNNs with attention mechanism to tackle a challenging nonlinear regression problem: network localization.
We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions.
arXiv Detail & Related papers (2023-11-28T15:05:13Z) - Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach [12.856220339384269]
Graph Neural Networks (GNNs) have established themselves as a key component in addressing diverse graph-based tasks.
Despite their notable successes, GNNs remain susceptible to input perturbations in the form of adversarial attacks.
This paper introduces an innovative approach to fortify GNNs against adversarial perturbations through the lens of coupled dynamical systems.
arXiv Detail & Related papers (2023-11-12T20:06:48Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
Adversarial training has been widely demonstrated to improve model's robustness against adversarial attacks.
It remains unclear how the adversarial training could improve the generalization abilities of GNNs in the graph analytics problem.
We construct the co-adversarial perturbation (CAP) optimization problem in terms of weights and features, and design the alternating adversarial perturbation algorithm to flatten the weight and feature loss landscapes alternately.
arXiv Detail & Related papers (2021-10-28T02:28:13Z) - Orthogonal Graph Neural Networks [53.466187667936026]
Graph neural networks (GNNs) have received tremendous attention due to their superiority in learning node representations.
stacking more convolutional layers significantly decreases the performance of GNNs.
We propose a novel Ortho-GConv, which could generally augment the existing GNN backbones to stabilize the model training and improve the model's generalization performance.
arXiv Detail & Related papers (2021-09-23T12:39:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.