ARN-LSTM: A Multi-Stream Attention-Based Model for Action Recognition with Temporal Dynamics
- URL: http://arxiv.org/abs/2411.01769v1
- Date: Mon, 04 Nov 2024 03:29:51 GMT
- Title: ARN-LSTM: A Multi-Stream Attention-Based Model for Action Recognition with Temporal Dynamics
- Authors: Chuanchuan Wang, Ahmad Sufril Azlan Mohmamed, Xiao Yang, Xiang Li,
- Abstract summary: ARN-LSTM is a novel action recognition model designed to address the challenge of simultaneously capturing spatial motion and temporal dynamics in action sequences.
Our proposed model integrates joint, motion, and temporal information through a multi-stream fusion architecture.
- Score: 6.6713480895907855
- License:
- Abstract: This paper presents ARN-LSTM, a novel multi-stream action recognition model designed to address the challenge of simultaneously capturing spatial motion and temporal dynamics in action sequences. Traditional methods often focus solely on spatial or temporal features, limiting their ability to comprehend complex human activities fully. Our proposed model integrates joint, motion, and temporal information through a multi-stream fusion architecture. Specifically, it comprises a joint stream for extracting skeleton features, a temporal stream for capturing dynamic temporal features, and an ARN-LSTM block that utilizes Time-Distributed Long Short-Term Memory (TD-LSTM) layers followed by an Attention Relation Network (ARN) to model temporal relations. The outputs from these streams are fused in a fully connected layer to provide the final action prediction. Evaluations on the NTU RGB+D 60 and NTU RGB+D 120 datasets demonstrate the effectiveness of our model, achieving effective performance, particularly in group activity recognition.
Related papers
- Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN.
We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node.
arXiv Detail & Related papers (2024-04-03T10:25:45Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
Existing methods are limited in weak-temporal modeling capability.
We propose a Decoupled Scoupled Framework (DeST) to address the issues.
DeST significantly outperforms current state-of-the-art methods with less computational complexity.
arXiv Detail & Related papers (2023-12-10T09:11:39Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Learning Sequence Representations by Non-local Recurrent Neural Memory [61.65105481899744]
We propose a Non-local Recurrent Neural Memory (NRNM) for supervised sequence representation learning.
Our model is able to capture long-range dependencies and latent high-level features can be distilled by our model.
Our model compares favorably against other state-of-the-art methods specifically designed for each of these sequence applications.
arXiv Detail & Related papers (2022-07-20T07:26:15Z) - Skeleton-based Action Recognition via Temporal-Channel Aggregation [5.620303498964992]
We propose a Temporal-Channel Aggregation Graph Conal Networks (TCA-CN) to learn spatial and temporal topologies.
In addition, we extract multi-scale skeletal temporal modeling and fuse them with priori skeletal knowledge with an attention mechanism.
arXiv Detail & Related papers (2022-05-31T16:28:30Z) - Slow-Fast Visual Tempo Learning for Video-based Action Recognition [78.3820439082979]
Action visual tempo characterizes the dynamics and the temporal scale of an action.
Previous methods capture the visual tempo either by sampling raw videos with multiple rates, or by hierarchically sampling backbone features.
We propose a Temporal Correlation Module (TCM) to extract action visual tempo from low-level backbone features at single-layer remarkably.
arXiv Detail & Related papers (2022-02-24T14:20:04Z) - TSI: Temporal Saliency Integration for Video Action Recognition [32.18535820790586]
We propose a Temporal Saliency Integration (TSI) block, which mainly contains a Salient Motion Excitation (SME) module and a Cross-scale Temporal Integration (CTI) module.
SME aims to highlight the motion-sensitive area through local-global motion modeling.
CTI is designed to perform multi-scale temporal modeling through a group of separate 1D convolutions respectively.
arXiv Detail & Related papers (2021-06-02T11:43:49Z) - Temporal Graph Modeling for Skeleton-based Action Recognition [25.788239844759246]
We propose a Temporal Enhanced Graph Convolutional Network (TE-GCN) to capture complex temporal dynamic.
The constructed temporal relation graph explicitly builds connections between semantically related temporal features.
Experiments are performed on two widely used large-scale datasets.
arXiv Detail & Related papers (2020-12-16T09:02:47Z) - Learn to cycle: Time-consistent feature discovery for action recognition [83.43682368129072]
Generalizing over temporal variations is a prerequisite for effective action recognition in videos.
We introduce Squeeze Re Temporal Gates (SRTG), an approach that favors temporal activations with potential variations.
We show consistent improvement when using SRTPG blocks, with only a minimal increase in the number of GFLOs.
arXiv Detail & Related papers (2020-06-15T09:36:28Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.