Non rigid geometric distortions correction -- Application to atmospheric turbulence stabilization
- URL: http://arxiv.org/abs/2411.01788v1
- Date: Mon, 04 Nov 2024 04:21:41 GMT
- Title: Non rigid geometric distortions correction -- Application to atmospheric turbulence stabilization
- Authors: Yu Mao, Jerome Gilles,
- Abstract summary: A novel approach is presented to recover an image degraded by atmospheric turbulence.
Given a sequence of frames affected by turbulence, we construct a variational model to characterize the static image.
Our algorithm is simple, efficient, and can be easily generalized for different scenarios.
- Score: 2.4094285826152597
- License:
- Abstract: A novel approach is presented to recover an image degraded by atmospheric turbulence. Given a sequence of frames affected by turbulence, we construct a variational model to characterize the static image. The optimization problem is solved by Bregman Iteration and the operator splitting method. Our algorithm is simple, efficient, and can be easily generalized for different scenarios.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Turbulence stabilization [2.4094285826152597]
We develop a new approach to get a stabilized image from a sequence of frames acquired through atmospheric turbulence.
The goal of this algorihtm is to remove the geometric distortions due by the atmosphere movements.
In this paper we propose to study the influence of the choice of the regularizing term in the model.
arXiv Detail & Related papers (2024-11-05T08:04:29Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Atmospheric Turbulence Correction via Variational Deep Diffusion [23.353013333671335]
Diffusion models have shown impressive accomplishments in photo-realistic image synthesis and beyond.
We propose a novel deep conditional diffusion model under a variational inference framework to solve the Atmospheric Turbulence correction problem.
arXiv Detail & Related papers (2023-05-08T22:35:07Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - AT-DDPM: Restoring Faces degraded by Atmospheric Turbulence using
Denoising Diffusion Probabilistic Models [64.24948495708337]
Atmospheric turbulence causes significant degradation to image quality by introducing blur and geometric distortion.
Various deep learning-based single image atmospheric turbulence mitigation methods, including CNN-based and GAN inversion-based, have been proposed.
Denoising Diffusion Probabilistic Models (DDPMs) have recently gained some traction because of their stable training process and their ability to generate high quality images.
arXiv Detail & Related papers (2022-08-24T03:13:04Z) - Single Frame Atmospheric Turbulence Mitigation: A Benchmark Study and A
New Physics-Inspired Transformer Model [82.23276183684001]
We propose a physics-inspired transformer model for imaging through atmospheric turbulence.
The proposed network utilizes the power of transformer blocks to jointly extract a dynamical turbulence distortion map.
We present two new real-world turbulence datasets that allow for evaluation with both classical objective metrics and a new task-driven metric using text recognition accuracy.
arXiv Detail & Related papers (2022-07-20T17:09:16Z) - Equivariance Regularization for Image Reconstruction [5.025654873456756]
We propose a structure-adaptive regularization scheme for solving imaging inverse problems under incomplete measurements.
This regularization scheme utilizes the equivariant structure in the physics of the measurements to mitigate the ill-poseness of the inverse problem.
Our proposed scheme can be applied in a plug-and-play manner alongside with any classic first-order optimization algorithm.
arXiv Detail & Related papers (2022-02-10T14:38:08Z) - Image Reconstruction of Static and Dynamic Scenes through Anisoplanatic
Turbulence [1.6114012813668934]
We present a unified method for atmospheric turbulence mitigation in both static and dynamic sequences.
We are able to achieve better results compared to existing methods by utilizing a novel space-time non-local averaging method.
arXiv Detail & Related papers (2020-08-31T19:20:46Z) - Learning to Restore a Single Face Image Degraded by Atmospheric
Turbulence using CNNs [93.72048616001064]
Images captured under such condition suffer from a combination of geometric deformation and space varying blur.
We present a deep learning-based solution to the problem of restoring a turbulence-degraded face image.
arXiv Detail & Related papers (2020-07-16T15:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.