論文の概要: Can Language Models Enable In-Context Database?
- arxiv url: http://arxiv.org/abs/2411.01807v1
- Date: Mon, 04 Nov 2024 05:25:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:38.656542
- Title: Can Language Models Enable In-Context Database?
- Title(参考訳): 言語モデルはコンテキスト内データベースを可能にするか?
- Authors: Yu Pan, Hongfeng Yu, Tianjiao Zhao, Jianxin Sun,
- Abstract要約: 大型言語モデル (LLM) は、様々なタスクを処理できる数ショットの学習者として登場している。
軽量で人間が読めるインコンテキストデータベースの特徴は、従来のデータベースの代替となる可能性がある。
- 参考スコア(独自算出の注目度): 3.675766365690372
- License:
- Abstract: Large language models (LLMs) are emerging as few-shot learners capable of handling a variety of tasks, including comprehension, planning, reasoning, question answering, arithmetic calculations, and more. At the core of these capabilities is LLMs' proficiency in representing and understanding structural or semi-structural data, such as tables and graphs. Numerous studies have demonstrated that reasoning on tabular data or graphs is not only feasible for LLMs but also gives a promising research direction which treats these data as in-context data. The lightweight and human readable characteristics of in-context database can potentially make it an alternative for the traditional database in typical RAG (Retrieval Augmented Generation) settings. However, almost all current work focuses on static in-context data, which does not allow dynamic update. In this paper, to enable dynamic database update, delta encoding of database is proposed. We explore how data stored in traditional RDBMS can be encoded as in-context text and evaluate LLMs' proficiency for CRUD (Create, Read, Update and Delete) operations on in-context databases. A benchmark named InConDB is presented and extensive experiments are conducted to show the performance of different language models in enabling in-context database by varying the database encoding method, prompting method, operation type and input data distribution, revealing both the proficiency and limitations.
- Abstract(参考訳): 大規模言語モデル (LLM) は、理解、計画、推論、質問応答、算術計算など、様々なタスクを処理できる少人数の学習者として出現している。
これらの機能の核心は、テーブルやグラフのような構造的データや半構造的データの表現と理解におけるLLMの能力である。
多くの研究が、表データやグラフの推論はLLMにとって実現可能であるだけでなく、これらのデータをコンテキスト内データとして扱うための有望な研究方向も示している。
軽量で人間が読めるインコンテキストデータベースの特徴は、典型的なRAG(Retrieval Augmented Generation)設定における従来のデータベースの代替となる可能性がある。
しかし、現在の作業のほとんどは静的なインコンテキストデータに重点を置いているため、動的更新はできない。
本稿では,動的データベース更新を実現するために,データベースのデルタ符号化を提案する。
我々は、従来のRDBMSに格納されたデータを、インコンテキストテキストとしてエンコードし、インコンテキストデータベース上でのCRUD(Create, Read, Update, Delete)操作に対するLLMの習熟度を評価する。
InConDBと命名されたベンチマークを提示し,データベースエンコーディング方法の変更,メソッド,操作タイプ,入力データ配布の促進,習熟度と制限の両面を明らかにすることで,コンテクスト内データベースの実現において,さまざまな言語モデルの性能を示すための広範な実験を行った。
関連論文リスト
- From Natural Language to SQL: Review of LLM-based Text-to-SQL Systems [1.1060425537315088]
この調査は、LLMベースのテキスト・ツー・スカルシステムの進化に関する包括的研究を提供する。
ベンチマーク、評価方法、評価指標について議論する。
効率性、モデルプライバシ、データプライバシといった重要な課題を、その開発と潜在的な領域の改善の観点から強調する。
論文 参考訳(メタデータ) (2024-10-01T20:46:25Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - Improving Retrieval-augmented Text-to-SQL with AST-based Ranking and Schema Pruning [10.731045939849125]
本稿では,テキストからセマンティックへの解析に注目する。
商用データベースのスキーマのサイズとビジネスインテリジェンスソリューションのデプロイ可能性に関する課題から,入力データベース情報を動的に取得する $textASTReS$ を提案する。
論文 参考訳(メタデータ) (2024-07-03T15:55:14Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Querying Large Language Models with SQL [16.383179496709737]
多くのユースケースでは、情報はテキストに格納されるが、構造化データでは利用できない。
事前訓練されたLarge Language Models (LLMs) の台頭に伴い、大量のテキストコーパスから抽出された情報を保存および使用するための効果的なソリューションが現在存在する。
本稿では,従来のデータベースアーキテクチャに基づくプロトタイプであるGaloisについて紹介する。
論文 参考訳(メタデータ) (2023-04-02T06:58:14Z) - Uni-Parser: Unified Semantic Parser for Question Answering on Knowledge
Base and Database [86.03294330305097]
知識ベース(KB)とデータベース(DB)の両方で質問応答(QA)を統一した意味的要素を提案する。
フレームワークに不可欠な要素としてプリミティブ(KBのリレーションとエンティティ、テーブル名、列名、DBのセル値)を導入します。
生成元を利用して、異なる操作でトップランクプリミティブを変更・構成することで、最終的な論理形式を予測する。
論文 参考訳(メタデータ) (2022-11-09T19:33:27Z) - BERT Meets Relational DB: Contextual Representations of Relational
Databases [4.029818252558553]
複数のテーブルからなる関係データベース上でエンティティの低次元表現を学習する問題に対処する。
これらの注意に基づくモデルを使用して、リレーショナルデータベース内のエンティティの埋め込みを学ぶ方法を検討します。
論文 参考訳(メタデータ) (2021-04-30T11:23:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。