論文の概要: High-Pass Graph Convolutional Network for Enhanced Anomaly Detection: A Novel Approach
- arxiv url: http://arxiv.org/abs/2411.01817v1
- Date: Mon, 04 Nov 2024 05:38:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:01.688529
- Title: High-Pass Graph Convolutional Network for Enhanced Anomaly Detection: A Novel Approach
- Title(参考訳): 高度な異常検出のための高パスグラフ畳み込みネットワーク:新しいアプローチ
- Authors: Shelei Li, Yong Chai Tan, Tai Vincent,
- Abstract要約: 本稿では,グラフ異常検出(GAD)のためのハイパスグラフ畳み込みネットワーク(HP-GCN)を提案する。
提案したHP-GCNは、異常が正常ノードネットワーク内の高周波信号を増加させる傾向があるため、異常を検出するために高周波成分を利用する。
このモデルはYelpChi、Amazon、T-Finance、T-Socialデータセットで評価され、検証される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Graph Convolutional Network (GCN) are widely used in Graph Anomaly Detection (GAD) due to their natural compatibility with graph structures, resulting in significant performance improvements. However, most researchers approach GAD as a graph node classification task and often rely on low-pass filters or feature aggregation from neighboring nodes. This paper proposes a novel approach by introducing a High-Pass Graph Convolution Network (HP-GCN) for GAD. The proposed HP-GCN leverages high-frequency components to detect anomalies, as anomalies tend to increase high-frequency signals within the network of normal nodes. Additionally, isolated nodes, which lack interactions with other nodes, present a challenge for Graph Neural Network (GNN). To address this, the model segments the graph into isolated nodes and nodes within connected subgraphs. Isolated nodes learn their features through Multi-Layer Perceptron (MLP), enhancing detection accuracy. The model is evaluated and validated on YelpChi, Amazon, T-Finance, and T-Social datasets. The results showed that the proposed HP-GCN can achieve anomaly detection accuracy of 96.10%, 98.16%, 96.46%, and 98.94%, respectively. The findings demonstrate that the HP-GCN outperforms existing GAD methods based on spatial domain GNN as well as those using low-pass and band-pass filters in spectral domain GCN. The findings underscore the effectiveness of this method in improving anomaly detection performance. Source code can be found at: https://github.com/meteor0033/High-pass_GAD.git.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)はグラフ構造との自然な互換性のため、グラフ異常検出(GAD)で広く利用されている。
しかし、ほとんどの研究者はグラフノード分類タスクとしてGADにアプローチし、しばしばローパスフィルタや近隣ノードの機能集約に依存している。
本稿では,GADのためのハイパスグラフ畳み込みネットワーク(HP-GCN)を提案する。
提案したHP-GCNは、異常が正常ノードネットワーク内の高周波信号を増加させる傾向があるため、異常を検出するために高周波成分を利用する。
さらに、他のノードとの相互作用が欠如している孤立ノードは、グラフニューラルネットワーク(GNN)の課題を示す。
これを解決するために、モデルはグラフを接続されたサブグラフ内の孤立したノードとノードに分割する。
分離ノードはMulti-Layer Perceptron (MLP)を通じて機能を学習し、検出精度を向上させる。
このモデルはYelpChi、Amazon、T-Finance、T-Socialデータセットで評価され、検証される。
その結果,HP-GCNの異常検出精度は96.10%,98.16%,96.46%,98.94%であった。
その結果,HP-GCNはスペクトル領域GCNの低域通過フィルタや帯域通過フィルタと同様に,空間領域GNNに基づく既存のGAD法よりも優れていた。
その結果, 異常検出性能の向上に本手法の有効性が示唆された。
ソースコードは、https://github.com/meteor0033/High-pass_GAD.git.comにある。
関連論文リスト
- Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph
Embeddings Augmentation [11.841882902141696]
Ego-centric Spectral subGraph Embedding Augmentation (ESGEA) と呼ばれる新しいアプローチを提案する。
ESGEAは、特に情報が不足しているシナリオにおいて、ノード機能の強化と設計を目的としている。
ノード属性が利用できないソーシャルネットワークグラフ分類タスクにおいて,提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-10T14:57:29Z) - A Topological Perspective on Demystifying GNN-Based Link Prediction
Performance [72.06314265776683]
トポロジカル濃度 (TC) は、各ノードの局所部分グラフと隣人の部分グラフの交点に基づいている。
また,TCLは,次数や部分グラフ密度などの他のノードレベルのトポロジ指標よりもLP性能と高い相関性を示した。
我々は, 近似トポロジカル濃度 (ATC) を提案し, 理論的・経験的にTC近似の有効性を正当化し, 複雑さを低減させる。
論文 参考訳(メタデータ) (2023-10-06T22:07:49Z) - GraphPatcher: Mitigating Degree Bias for Graph Neural Networks via
Test-time Augmentation [48.88356355021239]
グラフニューラルネットワーク(GNN)は通常、豊富な隣り合う情報を持つ高次ノードで十分に機能するが、低次ノードと競合する。
低次ノード上の任意のGNNのテスト時間一般化を強化するためのテスト時間拡張フレームワークであるGraphPatcherを提案する。
GraphPatcherはGNN全体のパフォーマンスを最大3.6%向上し、低度性能を最大6.5%向上させ、最先端のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2023-10-01T21:50:03Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - GAD-NR: Graph Anomaly Detection via Neighborhood Reconstruction [36.56631787651942]
グラフオートエンコーダ(GAE)はグラフデータをノード表現にエンコードし、これらの表現に基づいてグラフの再構成品質を評価することで異常を識別する。
グラフ異常検出のための近傍再構成を組み込んだ新しいGAEであるGAD-NRを提案する。
6つの実世界のデータセットで実施された大規模な実験は、GAD-NRの有効性を検証し、最先端の競合相手よりも顕著な改善(AUCでは最大30%)を示す。
論文 参考訳(メタデータ) (2023-06-02T23:23:34Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
サブ構造認識(ARISE)による属性付きネットワーク上の新しいグラフ異常検出フレームワークを提案する。
ARISEは、異常を識別するグラフのサブ構造に焦点を当てている。
実験により、ARISEは最先端の属性付きネットワーク異常検出(ANAD)アルゴリズムと比較して、検出性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-28T12:17:40Z) - Edge Graph Neural Networks for Massive MIMO Detection [15.970981766599035]
無線通信システムにおいて、MIMO(Massive Multiple-Input Multiple-Out)検出は重要な問題である。
従来のBreief Propagation(BP)検出器はループグラフでは性能が良くないが、最近のグラフニューラルネットワーク(GNN)ベースの手法はBPの欠点を克服し、優れた性能を実現することができる。
論文 参考訳(メタデータ) (2022-05-22T08:01:47Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - On Local Aggregation in Heterophilic Graphs [11.100606980915144]
我々は,従来のGNNと多層パーセプトロンを適切に調整した手法が,ヘテロ親和性グラフ上の最近の長距離アグリゲーション手法の精度に適合しているか,あるいは超越しているかを示す。
本稿では,新しい情報理論グラフ計量であるNativeborhood Information Content(NIC)メトリックを提案する。
論文 参考訳(メタデータ) (2021-06-06T19:12:31Z) - Understanding and Resolving Performance Degradation in Graph
Convolutional Networks [105.14867349802898]
グラフ畳み込みネットワーク(GCN)は複数のレイヤを積み重ね、グラフ構造化データ上でノード表現を学習するためのPROPとTRANを実行する。
GCNはモデルが深くなるとパフォーマンスが低下する傾向がある。
本稿では,TRANやPROPのみを積み重ねることによるGCNの性能劣化について実験的に検討する。
論文 参考訳(メタデータ) (2020-06-12T12:12:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。