OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning
- URL: http://arxiv.org/abs/2411.01833v1
- Date: Mon, 04 Nov 2024 06:07:43 GMT
- Title: OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning
- Authors: Shengjie Niu, Lifan Lin, Jian Huang, Chao Wang,
- Abstract summary: Semi-supervised learning (SSL) offers a robust framework for harnessing the potential of unannotated data.
The emergence of open-world SSL (OwSSL) introduces a more practical challenge, wherein unlabeled data may encompass samples from unseen classes.
We propose an effective framework called OwMatch, combining conditional self-labeling and open-world hierarchical thresholding.
- Score: 4.462726364160216
- License:
- Abstract: Semi-supervised learning (SSL) offers a robust framework for harnessing the potential of unannotated data. Traditionally, SSL mandates that all classes possess labeled instances. However, the emergence of open-world SSL (OwSSL) introduces a more practical challenge, wherein unlabeled data may encompass samples from unseen classes. This scenario leads to misclassification of unseen classes as known ones, consequently undermining classification accuracy. To overcome this challenge, this study revisits two methodologies from self-supervised and semi-supervised learning, self-labeling and consistency, tailoring them to address the OwSSL problem. Specifically, we propose an effective framework called OwMatch, combining conditional self-labeling and open-world hierarchical thresholding. Theoretically, we analyze the estimation of class distribution on unlabeled data through rigorous statistical analysis, thus demonstrating that OwMatch can ensure the unbiasedness of the self-label assignment estimator with reliability. Comprehensive empirical analyses demonstrate that our method yields substantial performance enhancements across both known and unknown classes in comparison to previous studies. Code is available at https://github.com/niusj03/OwMatch.
Related papers
- AllMatch: Exploiting All Unlabeled Data for Semi-Supervised Learning [5.0823084858349485]
We present a novel SSL algorithm named AllMatch, which achieves improved pseudo-label accuracy and a 100% utilization ratio for the unlabeled data.
The results demonstrate that AllMatch consistently outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-06-22T06:59:52Z) - Robust Semi-Supervised Learning for Self-learning Open-World Classes [5.714673612282175]
In real-world applications, unlabeled data always contain classes not present in the labeled set.
We propose an open-world SSL method for Self-learning Open-world Classes (SSOC), which can explicitly self-learn multiple unknown classes.
SSOC outperforms the state-of-the-art baselines on multiple popular classification benchmarks.
arXiv Detail & Related papers (2024-01-15T09:27:46Z) - InstanT: Semi-supervised Learning with Instance-dependent Thresholds [75.91684890150283]
We propose the study of instance-dependent thresholds, which has the highest degree of freedom compared with existing methods.
We devise a novel instance-dependent threshold function for all unlabeled instances by utilizing their instance-level ambiguity and the instance-dependent error rates of pseudo-labels.
arXiv Detail & Related papers (2023-10-29T05:31:43Z) - Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario [14.916971861796384]
Semi-Supervised Learning (SSL) is a framework that utilizes both labeled and unlabeled data to enhance model performance.
We propose a general approach to augment existing SSL methods, enabling them to handle situations where certain classes are missing.
Our experimental results reveal significant improvements in accuracy when compared to state-of-the-art SSL, open-set SSL, and open-world SSL methods.
arXiv Detail & Related papers (2023-08-27T14:25:07Z) - Complementing Semi-Supervised Learning with Uncertainty Quantification [6.612035830987296]
We propose a novel unsupervised uncertainty-aware objective that relies on aleatoric and epistemic uncertainty quantification.
Our results outperform the state-of-the-art results on complex datasets such as CIFAR-100 and Mini-ImageNet.
arXiv Detail & Related papers (2022-07-22T00:15:02Z) - OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning [110.40285771431687]
Semi-supervised learning (SSL) is one of the dominant approaches to address the annotation bottleneck of supervised learning.
Recent SSL methods can effectively leverage a large repository of unlabeled data to improve performance while relying on a small set of labeled data.
This work introduces OpenLDN that utilizes a pairwise similarity loss to discover novel classes.
arXiv Detail & Related papers (2022-07-05T18:51:05Z) - Self-supervised Learning is More Robust to Dataset Imbalance [65.84339596595383]
We investigate self-supervised learning under dataset imbalance.
Off-the-shelf self-supervised representations are already more robust to class imbalance than supervised representations.
We devise a re-weighted regularization technique that consistently improves the SSL representation quality on imbalanced datasets.
arXiv Detail & Related papers (2021-10-11T06:29:56Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - OpenMatch: Open-set Consistency Regularization for Semi-supervised
Learning with Outliers [71.08167292329028]
We propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch.
OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers.
It achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10.
arXiv Detail & Related papers (2021-05-28T23:57:15Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
We develop Distribution Aligning Refinery of Pseudo-label (DARP) algorithm.
We show that DARP is provably and efficiently compatible with state-of-the-art SSL schemes.
arXiv Detail & Related papers (2020-07-17T09:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.