Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario
- URL: http://arxiv.org/abs/2308.14119v2
- Date: Wed, 15 Nov 2023 16:15:19 GMT
- Title: Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario
- Authors: Noam Fluss, Guy Hacohen, Daphna Weinshall
- Abstract summary: Semi-Supervised Learning (SSL) is a framework that utilizes both labeled and unlabeled data to enhance model performance.
We propose a general approach to augment existing SSL methods, enabling them to handle situations where certain classes are missing.
Our experimental results reveal significant improvements in accuracy when compared to state-of-the-art SSL, open-set SSL, and open-world SSL methods.
- Score: 14.916971861796384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-Supervised Learning (SSL) is a framework that utilizes both labeled and
unlabeled data to enhance model performance. Conventional SSL methods operate
under the assumption that labeled and unlabeled data share the same label
space. However, in practical real-world scenarios, especially when the labeled
training dataset is limited in size, some classes may be totally absent from
the labeled set. To address this broader context, we propose a general approach
to augment existing SSL methods, enabling them to effectively handle situations
where certain classes are missing. This is achieved by introducing an
additional term into their objective function, which penalizes the
KL-divergence between the probability vectors of the true class frequencies and
the inferred class frequencies. Our experimental results reveal significant
improvements in accuracy when compared to state-of-the-art SSL, open-set SSL,
and open-world SSL methods. We conducted these experiments on two benchmark
image classification datasets, CIFAR-100 and STL-10, with the most remarkable
improvements observed when the labeled data is severely limited, with only a
few labeled examples per class
Related papers
- OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning [4.462726364160216]
Semi-supervised learning (SSL) offers a robust framework for harnessing the potential of unannotated data.
The emergence of open-world SSL (OwSSL) introduces a more practical challenge, wherein unlabeled data may encompass samples from unseen classes.
We propose an effective framework called OwMatch, combining conditional self-labeling and open-world hierarchical thresholding.
arXiv Detail & Related papers (2024-11-04T06:07:43Z) - Semi-Supervised Sparse Gaussian Classification: Provable Benefits of Unlabeled Data [6.812609988733991]
We study SSL for high dimensional Gaussian classification.
We analyze information theoretic lower bounds for accurate feature selection.
We present simulations that complement our theoretical analysis.
arXiv Detail & Related papers (2024-09-05T08:21:05Z) - Generalized Semi-Supervised Learning via Self-Supervised Feature Adaptation [87.17768598044427]
Traditional semi-supervised learning assumes that the feature distributions of labeled and unlabeled data are consistent.
We propose Self-Supervised Feature Adaptation (SSFA), a generic framework for improving SSL performance when labeled and unlabeled data come from different distributions.
Our proposed SSFA is applicable to various pseudo-label-based SSL learners and significantly improves performance in labeled, unlabeled, and even unseen distributions.
arXiv Detail & Related papers (2024-05-31T03:13:45Z) - Robust Semi-Supervised Learning for Self-learning Open-World Classes [5.714673612282175]
In real-world applications, unlabeled data always contain classes not present in the labeled set.
We propose an open-world SSL method for Self-learning Open-world Classes (SSOC), which can explicitly self-learn multiple unknown classes.
SSOC outperforms the state-of-the-art baselines on multiple popular classification benchmarks.
arXiv Detail & Related papers (2024-01-15T09:27:46Z) - InstanT: Semi-supervised Learning with Instance-dependent Thresholds [75.91684890150283]
We propose the study of instance-dependent thresholds, which has the highest degree of freedom compared with existing methods.
We devise a novel instance-dependent threshold function for all unlabeled instances by utilizing their instance-level ambiguity and the instance-dependent error rates of pseudo-labels.
arXiv Detail & Related papers (2023-10-29T05:31:43Z) - Improving Open-Set Semi-Supervised Learning with Self-Supervision [13.944469874692459]
Open-set semi-supervised learning (OSSL) embodies a practical scenario within semi-supervised learning.
We propose an OSSL framework that facilitates learning from all unlabeled data through self-supervision.
Our method yields state-of-the-art results on many of the evaluated benchmark problems.
arXiv Detail & Related papers (2023-01-24T16:46:37Z) - Towards Realistic Semi-Supervised Learning [73.59557447798134]
We propose a novel approach to tackle SSL in open-world setting, where we simultaneously learn to classify known and unknown classes.
Our approach substantially outperforms the existing state-of-the-art on seven diverse datasets.
arXiv Detail & Related papers (2022-07-05T19:04:43Z) - OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning [110.40285771431687]
Semi-supervised learning (SSL) is one of the dominant approaches to address the annotation bottleneck of supervised learning.
Recent SSL methods can effectively leverage a large repository of unlabeled data to improve performance while relying on a small set of labeled data.
This work introduces OpenLDN that utilizes a pairwise similarity loss to discover novel classes.
arXiv Detail & Related papers (2022-07-05T18:51:05Z) - Class-Aware Contrastive Semi-Supervised Learning [51.205844705156046]
We propose a general method named Class-aware Contrastive Semi-Supervised Learning (CCSSL) to improve pseudo-label quality and enhance the model's robustness in the real-world setting.
Our proposed CCSSL has significant performance improvements over the state-of-the-art SSL methods on the standard datasets CIFAR100 and STL10.
arXiv Detail & Related papers (2022-03-04T12:18:23Z) - Self-supervised Learning is More Robust to Dataset Imbalance [65.84339596595383]
We investigate self-supervised learning under dataset imbalance.
Off-the-shelf self-supervised representations are already more robust to class imbalance than supervised representations.
We devise a re-weighted regularization technique that consistently improves the SSL representation quality on imbalanced datasets.
arXiv Detail & Related papers (2021-10-11T06:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.