FPPL: An Efficient and Non-IID Robust Federated Continual Learning Framework
- URL: http://arxiv.org/abs/2411.01904v2
- Date: Sat, 16 Nov 2024 12:05:45 GMT
- Title: FPPL: An Efficient and Non-IID Robust Federated Continual Learning Framework
- Authors: Yuchen He, Chuyun Shen, Xiangfeng Wang, Bo Jin,
- Abstract summary: Federated continual learning (FCL) aims to learn from sequential data stream in the decentralized federated learning setting.
Existing FCL methods usually employ typical rehearsal mechanisms, which could result in privacy violations or additional onerous storage and computational burdens.
In this work, an efficient and non-IID robust federated continual learning framework, called Federated Prototype-Augmented Prompt Learning (FPPL), is proposed.
- Score: 6.446904116575293
- License:
- Abstract: Federated continual learning (FCL) aims to learn from sequential data stream in the decentralized federated learning setting, while simultaneously mitigating the catastrophic forgetting issue in classical continual learning. Existing FCL methods usually employ typical rehearsal mechanisms, which could result in privacy violations or additional onerous storage and computational burdens. In this work, an efficient and non-IID robust federated continual learning framework, called Federated Prototype-Augmented Prompt Learning (FPPL), is proposed. The FPPL can collaboratively learn lightweight prompts augmented by prototypes without rehearsal. On the client side, a fusion function is employed to fully leverage the knowledge contained in task-specific prompts for alleviating catastrophic forgetting. Additionally, global prototypes aggregated from the server are used to obtain unified representation through contrastive learning, mitigating the impact of non-IID-derived data heterogeneity. On the server side, locally uploaded prototypes are utilized to perform debiasing on the classifier, further alleviating the performance degradation caused by both non-IID and catastrophic forgetting. Empirical evaluations demonstrate the effectiveness of FPPL, achieving notable performance with an efficient design while remaining robust to diverse non-IID degrees. Code is available at: https://github.com/ycheoo/FPPL.
Related papers
- FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - FedRFQ: Prototype-Based Federated Learning with Reduced Redundancy,
Minimal Failure, and Enhanced Quality [41.88338945821504]
FedRFQ is a prototype-based federated learning approach that aims to reduce redundancy, minimize failures, and improve underlinequality.
We introduce the BFT-detect, a BFT (Byzantine Fault Tolerance) detectable aggregation algorithm, to ensure the security of FedRFQ against poisoning attacks and server malfunctions.
arXiv Detail & Related papers (2024-01-15T09:50:27Z) - PILoRA: Prototype Guided Incremental LoRA for Federated Class-Incremental Learning [41.984652077669104]
Experimental results on standard datasets indicate that our method outperforms the state-of-the-art approaches significantly.
Our method exhibits strong robustness and superiority in different settings and degrees of data heterogeneity.
arXiv Detail & Related papers (2024-01-04T06:46:19Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Hyperspherical Consistency Regularization [45.00073340936437]
We explore the relationship between self-supervised learning and supervised learning, and study how self-supervised learning helps robust data-efficient deep learning.
We propose hyperspherical consistency regularization (HCR), a simple yet effective plug-and-play method, to regularize the classifier using feature-dependent information and thus avoid bias from labels.
arXiv Detail & Related papers (2022-06-02T02:41:13Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - FedProc: Prototypical Contrastive Federated Learning on Non-IID data [24.1906520295278]
Federated learning allows multiple clients to collaborate to train deep learning models while keeping the training data locally.
We propose FedProc: prototypical contrastive federated learning.
We show that FedProc improves the accuracy by $1.6%sim7.9%$ with acceptable computation cost.
arXiv Detail & Related papers (2021-09-25T04:32:23Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local.
We propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system.
It is an efficient and effective algorithm that compresses both upstream and downstream communications.
arXiv Detail & Related papers (2021-06-17T12:30:40Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.