論文の概要: Deep memetic models for combinatorial optimization problems: application to the tool switching problem
- arxiv url: http://arxiv.org/abs/2411.01922v1
- Date: Mon, 04 Nov 2024 09:39:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:24.672338
- Title: Deep memetic models for combinatorial optimization problems: application to the tool switching problem
- Title(参考訳): 組合せ最適化問題に対するDeep Memetic Model:ツール切替問題への応用
- Authors: Jhon Edgar Amaya, Carlos Cotta, Antonio J. Fernández-Leiva, Pablo García-Sánchez,
- Abstract要約: この研究は、ディープなメタ協調、すなわち、一部のコンポーネントがそれ自身で協調メソッドとなるような協調最適化アルゴリズムの使用に取り組む。
本研究の目的は,このようなモデルが,従来の協調アルゴリズムの代替として有効であることを示すことである。
以上の結果から, 深層モデルでは, メタヒューリスティックスパラメータよりも優れていることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Memetic algorithms are techniques that orchestrate the interplay between population-based and trajectory-based algorithmic components. In particular, some memetic models can be regarded under this broad interpretation as a group of autonomous basic optimization algorithms that interact among them in a cooperative way in order to deal with a specific optimization problem, aiming to obtain better results than the algorithms that constitute it separately. Going one step beyond this traditional view of cooperative optimization algorithms, this work tackles deep meta-cooperation, namely the use of cooperative optimization algorithms in which some components can in turn be cooperative methods themselves, thus exhibiting a deep algorithmic architecture. The objective of this paper is to demonstrate that such models can be considered as an efficient alternative to other traditional forms of cooperative algorithms. To validate this claim, different structural parameters, such as the communication topology between the agents, or the parameter that influences the depth of the cooperative effort (the depth of meta-cooperation), have been analyzed. To do this, a comparison with the state-of-the-art cooperative methods to solve a specific combinatorial problem, the Tool Switching Problem, has been performed. Results show that deep models are effective to solve this problem, outperforming metaheuristics proposed in the literature.
- Abstract(参考訳): メメティックアルゴリズム(Memetic algorithm)は、人口ベースと軌道ベースのアルゴリズムコンポーネント間の相互作用を編成する手法である。
特に、この広い解釈の下では、特定の最適化問題に対処するため、協調的に相互作用する自律的基本最適化アルゴリズム群とみなすことができる。
この研究は、協調最適化アルゴリズムの伝統的な見解を超越して、ディープなメタ協力、すなわち、一部のコンポーネントが協調的な方法自体として利用できるような協調最適化アルゴリズムの利用に取り組むことで、ディープなアルゴリズムアーキテクチャを提示する。
本研究の目的は,このようなモデルが,従来の協調アルゴリズムの代替として有効であることを示すことである。
この主張を検証するため、エージェント間の通信トポロジや協調作業の深さ(メタ協調の深さ)に影響を与えるパラメータなどの異なる構造パラメータが分析された。
これを実現するために、特定の組合せ問題であるツールスイッチング問題を解決するための最先端の協調手法との比較を行った。
以上の結果から, 深層モデルがこの問題を解決し, メタヒューリスティックスに勝るものであることが示唆された。
関連論文リスト
- Memetic collaborative approaches for finding balanced incomplete block designs [0.0]
平衡不完全ブロック設計(BIBD)問題は、多数の対称性を持つ難しい問題である。
本稿では,古典的二元数定式化の代替として機能する双対(整数)問題表現を提案する。
論文 参考訳(メタデータ) (2024-11-04T16:41:18Z) - The Algorithm Configuration Problem [0.8075866265341176]
本稿では、決定/最適化問題の特定事例を解決するためのパラメータ化アルゴリズムの最適化に焦点を当てる。
本稿では,アルゴリズム構成問題の定式化だけでなく,その解決のための様々なアプローチを概説する包括的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-01T17:29:34Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - Optimistic Optimisation of Composite Objective with Exponentiated Update [2.1700203922407493]
このアルゴリズムは指数勾配と$p$-normアルゴリズムの組み合わせと解釈できる。
彼らはシーケンス依存の後悔の上界を達成し、スパース目標決定変数の最もよく知られた境界と一致する。
論文 参考訳(メタデータ) (2022-08-08T11:29:55Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
従来の手法に関する進化的アルゴリズムの利点は、文献で大いに議論されている。
粒子群はそのような利点を共有しているが、計算コストの低減と実装の容易さが要求されるため、進化的アルゴリズムよりも優れている。
本論文は, それらのチューニングについて検討するものではなく, 従来の研究から汎用的な設定を抽出し, 様々な問題を最適化するために, 事実上同じアルゴリズムを用いている。
論文 参考訳(メタデータ) (2021-01-25T02:06:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。