Deep Learning for Leopard Individual Identification: An Adaptive Angular Margin Approach
- URL: http://arxiv.org/abs/2411.01962v1
- Date: Mon, 04 Nov 2024 10:38:33 GMT
- Title: Deep Learning for Leopard Individual Identification: An Adaptive Angular Margin Approach
- Authors: David Colomer Matachana,
- Abstract summary: This paper introduces a deep learning framework to distinguish between individual leopards based on their unique spot patterns.
I propose a preprocessing pipeline that combines RGB channels with an edge detection channel to underscore the critical features learned by the model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate identification of individual leopards across camera trap images is critical for population monitoring and ecological studies. This paper introduces a deep learning framework to distinguish between individual leopards based on their unique spot patterns. This approach employs a novel adaptive angular margin method in the form of a modified CosFace architecture. In addition, I propose a preprocessing pipeline that combines RGB channels with an edge detection channel to underscore the critical features learned by the model. This approach significantly outperforms the Triplet Network baseline, achieving a Dynamic Top-5 Average Precision of 0.8814 and a Top-5 Rank Match Detection of 0.9533, demonstrating its potential for open-set learning in wildlife identification. While not surpassing the performance of the SIFT-based Hotspotter algorithm, this method represents a substantial advancement in applying deep learning to patterned wildlife identification. This research contributes to the field of computer vision and provides a valuable tool for biologists aiming to study and protect leopard populations. It also serves as a stepping stone for applying the power of deep learning in Capture-Recapture studies for other patterned species.
Related papers
- Evolved Hierarchical Masking for Self-Supervised Learning [49.77271430882176]
Existing Masked Image Modeling methods apply fixed mask patterns to guide the self-supervised training.
This paper introduces an evolved hierarchical masking method to pursue general visual cues modeling in self-supervised learning.
arXiv Detail & Related papers (2025-04-12T09:40:14Z) - Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach [77.65459419417533]
We propose an automatic dataset expansion technique to support semantics-oriented DeepFake detection tasks.
We also resort to joint embedding of face images and their corresponding labels for prediction.
Our method improves the generalizability of DeepFake detection and renders some degree of model interpretation by providing human-understandable explanations.
arXiv Detail & Related papers (2024-08-29T07:11:50Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Universal Bovine Identification via Depth Data and Deep Metric Learning [1.6605913858547239]
This paper proposes and evaluates, for the first time, a depth-only deep learning system for accurately identifying individual cattle.
An increase in herd size skews the cow-to-human ratio at the farm and makes the manual monitoring of individuals more challenging.
Underpinned by our previous work, this paper introduces a deep-metric learning method for cattle identification using depth data from an off-the-shelf 3D camera.
arXiv Detail & Related papers (2024-03-29T22:03:53Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
Prediction of protein-ligand interactions (PLI) plays a crucial role in drug discovery.
The development of a versatile model capable of accurately scoring binding affinity and conducting efficient virtual screening remains a challenge.
Here, we propose a viable solution by introducing a novel data augmentation strategy combined with a physics-informed graph neural network.
arXiv Detail & Related papers (2023-07-03T14:46:49Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Towards Individual Grevy's Zebra Identification via Deep 3D Fitting and
Metric Learning [2.004276260443012]
This paper combines deep learning techniques for species detection, 3D model fitting, and metric learning in one pipeline to perform individual animal identification.
We show in a small study on the SMALST dataset that the use of 3D model fitting can indeed benefit performance.
Back-projected textures from 3D fitted models improve identification accuracy from 48.0% to 56.8% compared to 2D bounding box approaches.
arXiv Detail & Related papers (2022-06-05T20:44:54Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Exploiting Depth Information for Wildlife Monitoring [0.0]
We propose an automated camera trap-based approach to detect and identify animals using depth estimation.
To detect and identify individual animals, we propose a novel method D-Mask R-CNN for the so-called instance segmentation.
An experimental evaluation shows the benefit of the additional depth estimation in terms of improved average precision scores of the animal detection.
arXiv Detail & Related papers (2021-02-10T18:10:34Z) - Meta-Gradient Reinforcement Learning with an Objective Discovered Online [54.15180335046361]
We propose an algorithm based on meta-gradient descent that discovers its own objective, flexibly parameterised by a deep neural network.
Because the objective is discovered online, it can adapt to changes over time.
On the Atari Learning Environment, the meta-gradient algorithm adapts over time to learn with greater efficiency.
arXiv Detail & Related papers (2020-07-16T16:17:09Z) - Temperate Fish Detection and Classification: a Deep Learning based
Approach [6.282069822653608]
We propose a two-step deep learning approach for the detection and classification of temperate fishes without pre-filtering.
The first step is to detect each single fish in an image, independent of species and sex.
In the second step, we adopt a Convolutional Neural Network (CNN) with the Squeeze-and-Excitation (SE) architecture for classifying each fish in the image without pre-filtering.
arXiv Detail & Related papers (2020-05-14T12:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.