Towards Individual Grevy's Zebra Identification via Deep 3D Fitting and
Metric Learning
- URL: http://arxiv.org/abs/2206.02261v2
- Date: Tue, 7 Jun 2022 19:38:58 GMT
- Title: Towards Individual Grevy's Zebra Identification via Deep 3D Fitting and
Metric Learning
- Authors: Maria Stennett, Daniel I. Rubenstein, Tilo Burghardt
- Abstract summary: This paper combines deep learning techniques for species detection, 3D model fitting, and metric learning in one pipeline to perform individual animal identification.
We show in a small study on the SMALST dataset that the use of 3D model fitting can indeed benefit performance.
Back-projected textures from 3D fitted models improve identification accuracy from 48.0% to 56.8% compared to 2D bounding box approaches.
- Score: 2.004276260443012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper combines deep learning techniques for species detection, 3D model
fitting, and metric learning in one pipeline to perform individual animal
identification from photographs by exploiting unique coat patterns. This is the
first work to attempt this and, compared to traditional 2D bounding box or
segmentation based CNN identification pipelines, the approach provides
effective and explicit view-point normalisation and allows for a straight
forward visualisation of the learned biometric population space. Note that due
to the use of metric learning the pipeline is also readily applicable to open
set and zero shot re-identification scenarios. We apply the proposed approach
to individual Grevy's zebra (Equus grevyi) identification and show in a small
study on the SMALST dataset that the use of 3D model fitting can indeed benefit
performance. In particular, back-projected textures from 3D fitted models
improve identification accuracy from 48.0% to 56.8% compared to 2D bounding box
approaches for the dataset. Whilst the study is far too small accurately to
estimate the full performance potential achievable in larger-scale real-world
application settings and in comparisons against polished tools, our work lays
the conceptual and practical foundations for a next step in animal biometrics
towards deep metric learning driven, fully 3D-aware animal identification in
open population settings. We publish network weights and relevant facilitating
source code with this paper for full reproducibility and as inspiration for
further research.
Related papers
- Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance [11.090775523892074]
We introduce a novel semi-supervised framework to alleviate the dependency on densely annotated data.
Our approach leverages 2D foundation models to generate essential 3D scene geometric and semantic cues.
Our method achieves up to 85% of the fully-supervised performance using only 10% labeled data.
arXiv Detail & Related papers (2024-08-21T12:13:18Z) - Universal Bovine Identification via Depth Data and Deep Metric Learning [1.6605913858547239]
This paper proposes and evaluates, for the first time, a depth-only deep learning system for accurately identifying individual cattle.
An increase in herd size skews the cow-to-human ratio at the farm and makes the manual monitoring of individuals more challenging.
Underpinned by our previous work, this paper introduces a deep-metric learning method for cattle identification using depth data from an off-the-shelf 3D camera.
arXiv Detail & Related papers (2024-03-29T22:03:53Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats [80.12253291709673]
We propose a novel affine-combining autoencoder (ACAE) method to perform dimensionality reduction on the number of landmarks.
Our approach scales to an extreme multi-dataset regime, where we use 28 3D human pose datasets to supervise one model.
arXiv Detail & Related papers (2022-12-29T22:22:49Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - 3D Facial Matching by Spiral Convolutional Metric Learning and a
Biometric Fusion-Net of Demographic Properties [0.0]
Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person.
In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties.
Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems.
arXiv Detail & Related papers (2020-09-10T09:31:47Z) - Monocular 3D Detection with Geometric Constraints Embedding and
Semi-supervised Training [3.8073142980733]
We propose a novel framework for monocular 3D objects detection using only RGB images, called KM3D-Net.
We design a fully convolutional model to predict object keypoints, dimension, and orientation, and then combine these estimations with perspective geometry constraints to compute position attribute.
arXiv Detail & Related papers (2020-09-02T00:51:51Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.