UnSegMedGAT: Unsupervised Medical Image Segmentation using Graph Attention Networks Clustering
- URL: http://arxiv.org/abs/2411.01966v1
- Date: Mon, 04 Nov 2024 10:42:21 GMT
- Title: UnSegMedGAT: Unsupervised Medical Image Segmentation using Graph Attention Networks Clustering
- Authors: A. Mudit Adityaja, Saurabh J. Shigwan, Nitin Kumar,
- Abstract summary: We propose an unsupervised segmentation framework using a pre-trained Dino-ViT.
We leverage the inherent graph structure within the image to realize a significant performance gain for segmentation in medical images.
Our method achieves state-of-the-art performance, even significantly surpassing or matching that of existing (semi) technique such as MedSAM.
- Score: 10.862430265350804
- License:
- Abstract: The data-intensive nature of supervised classification drives the interest of the researchers towards unsupervised approaches, especially for problems such as medical image segmentation, where labeled data is scarce. Building on the recent advancements of Vision transformers (ViT) in computer vision, we propose an unsupervised segmentation framework using a pre-trained Dino-ViT. In the proposed method, we leverage the inherent graph structure within the image to realize a significant performance gain for segmentation in medical images. For this, we introduce a modularity-based loss function coupled with a Graph Attention Network (GAT) to effectively capture the inherent graph topology within the image. Our method achieves state-of-the-art performance, even significantly surpassing or matching that of existing (semi)supervised technique such as MedSAM which is a Segment Anything Model in medical images. We demonstrate this using two challenging medical image datasets ISIC-2018 and CVC-ColonDB. This work underscores the potential of unsupervised approaches in advancing medical image analysis in scenarios where labeled data is scarce. The github repository of the code is available on [https://github.com/mudit-adityaja/UnSegMedGAT].
Related papers
- GraphCL: Graph-based Clustering for Semi-Supervised Medical Image Segmentation [20.43162035511489]
We propose a graph-based clustering for semi-supervised medical image segmentation (GraphCL) by jointly modeling graph data structure in a unified deep model.
We show that the proposed GraphCL algorithm outperforms state-of-the-art semi-supervised medical image segmentation methods.
arXiv Detail & Related papers (2024-11-20T09:24:46Z) - UnSeGArmaNet: Unsupervised Image Segmentation using Graph Neural Networks with Convolutional ARMA Filters [10.940349832919699]
We propose an unsupervised segmentation framework with a pre-trained ViT.
By harnessing the graph structure inherent within the image, the proposed method achieves a notable performance in segmentation.
The proposed method provides state-of-the-art performance (even comparable to supervised methods) on benchmark image segmentation datasets.
arXiv Detail & Related papers (2024-10-08T15:10:09Z) - Revisiting Surgical Instrument Segmentation Without Human Intervention: A Graph Partitioning View [7.594796294925481]
We propose an unsupervised method by reframing the video frame segmentation as a graph partitioning problem.
A self-supervised pre-trained model is firstly leveraged as a feature extractor to capture high-level semantic features.
On the "deep" eigenvectors, a surgical video frame is meaningfully segmented into different modules like tools and tissues, providing distinguishable semantic information.
arXiv Detail & Related papers (2024-08-27T05:31:30Z) - UnSegGNet: Unsupervised Image Segmentation using Graph Neural Networks [9.268228808049951]
This research contributes to the broader field of unsupervised medical imaging and computer vision.
It presents an innovative methodology for image segmentation that aligns with real-world challenges.
The proposed method holds promise for diverse applications, including medical imaging, remote sensing, and object recognition.
arXiv Detail & Related papers (2024-05-09T19:02:00Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
We propose an adversarial data augmentation method for training neural networks for medical image segmentation.
Our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field.
We show that such an approach can improve the ability generalization and robustness of models as well as provide significant improvements in low-data scenarios.
arXiv Detail & Related papers (2020-06-23T20:43:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.