SPECTRUM: Semantic Processing and Emotion-informed video-Captioning Through Retrieval and Understanding Modalities
- URL: http://arxiv.org/abs/2411.01975v1
- Date: Mon, 04 Nov 2024 10:51:47 GMT
- Title: SPECTRUM: Semantic Processing and Emotion-informed video-Captioning Through Retrieval and Understanding Modalities
- Authors: Ehsan Faghihi, Mohammedreza Zarenejad, Ali-Asghar Beheshti Shirazi,
- Abstract summary: This paper proposes a novel Semantic Processing and Emotion-informed video-Captioning Through Retrieval and Understanding Modalities (SPECTRUM) framework.
SPECTRUM discerns multimodal semantics and emotional themes using Visual Text Attribute Investigation (VTAI) and determines the orientation of descriptive captions.
They exploit video-to-text retrieval capabilities and the multifaceted nature of video content to estimate the emotional probabilities of candidate captions.
- Score: 0.7510165488300369
- License:
- Abstract: Capturing a video's meaning and critical concepts by analyzing the subtle details is a fundamental yet challenging task in video captioning. Identifying the dominant emotional tone in a video significantly enhances the perception of its context. Despite a strong emphasis on video captioning, existing models often need to adequately address emotional themes, resulting in suboptimal captioning results. To address these limitations, this paper proposes a novel Semantic Processing and Emotion-informed video-Captioning Through Retrieval and Understanding Modalities (SPECTRUM) framework to empower the generation of emotionally and semantically credible captions. Leveraging our pioneering structure, SPECTRUM discerns multimodal semantics and emotional themes using Visual Text Attribute Investigation (VTAI) and determines the orientation of descriptive captions through a Holistic Concept-Oriented Theme (HCOT), expressing emotionally-informed and field-acquainted references. They exploit video-to-text retrieval capabilities and the multifaceted nature of video content to estimate the emotional probabilities of candidate captions. Then, the dominant theme of the video is determined by appropriately weighting embedded attribute vectors and applying coarse- and fine-grained emotional concepts, which define the video's contextual alignment. Furthermore, using two loss functions, SPECTRUM is optimized to integrate emotional information and minimize prediction errors. Extensive experiments on the EmVidCap, MSVD, and MSRVTT video captioning datasets demonstrate that our model significantly surpasses state-of-the-art methods. Quantitative and qualitative evaluations highlight the model's ability to accurately capture and convey video emotions and multimodal attributes.
Related papers
- Multi-Modal interpretable automatic video captioning [1.9874264019909988]
We introduce a novel video captioning method trained with multi-modal contrastive loss.
Our approach is designed to capture the dependency between these modalities, resulting in more accurate, thus pertinent captions.
arXiv Detail & Related papers (2024-11-11T11:12:23Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - Towards Holistic Language-video Representation: the language model-enhanced MSR-Video to Text Dataset [4.452729255042396]
A more robust and holistic language-video representation is the key to pushing video understanding forward.
The current plain and simple text descriptions and the visual-only focus for the language-video tasks result in a limited capacity in real-world natural language video retrieval tasks.
This paper introduces a method to automatically enhance video-language datasets, making them more modality and context-aware.
arXiv Detail & Related papers (2024-06-19T20:16:17Z) - HENASY: Learning to Assemble Scene-Entities for Egocentric Video-Language Model [9.762722976833581]
Current models rely extensively on instance-level alignment between video and language modalities.
We take an inspiration from human perception and explore a compositional approach for ego video representation.
arXiv Detail & Related papers (2024-06-01T05:41:12Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
arXiv Detail & Related papers (2024-04-10T15:09:15Z) - Let's Think Frame by Frame with VIP: A Video Infilling and Prediction
Dataset for Evaluating Video Chain-of-Thought [62.619076257298204]
We motivate framing video reasoning as the sequential understanding of a small number of video reasonings.
We introduce VIP, an inference-time challenge dataset designed to explore models' reasoning capabilities through video chain-of-thought.
We benchmark GPT-4, GPT-3, and VICUNA on VIP, demonstrate the performance gap in complex video reasoning tasks, and encourage future work.
arXiv Detail & Related papers (2023-05-23T10:26:42Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
We propose verbalizing long videos to generate descriptions in natural language, then performing video-understanding tasks on the generated story as opposed to the original video.
Our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding.
To alleviate a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science on persuasion strategy identification.
arXiv Detail & Related papers (2023-05-16T19:13:11Z) - Taking an Emotional Look at Video Paragraph Captioning [38.98567869515748]
This work is conducted on video paragraph captioning, with the goal to generate paragraph-level descriptions for a given video.
To solve this problem, we propose to construct a large-scale emotion and logic driven multilingual dataset for this task.
This dataset is named EMVPC and contains 53 widely-used emotions in daily life, 376 common scenes corresponding to these emotions, 10,291 high-quality videos and 20,582 elaborated paragraph captions with English and Chinese versions.
arXiv Detail & Related papers (2022-03-12T06:19:48Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
We propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning.
Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions.
arXiv Detail & Related papers (2020-11-18T20:21:19Z) - Video Captioning with Guidance of Multimodal Latent Topics [123.5255241103578]
We propose an unified caption framework, M&M TGM, which mines multimodal topics in unsupervised fashion from data.
Compared to pre-defined topics, the mined multimodal topics are more semantically and visually coherent.
The results from extensive experiments conducted on the MSR-VTT and Youtube2Text datasets demonstrate the effectiveness of our proposed model.
arXiv Detail & Related papers (2017-08-31T11:18:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.